

Flutter Succinctly

By

Ed Freitas

Foreword by Daniel Jebaraj

3

Copyright © 2019 by Syncfusion, Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

Important licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a

registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other

liability arising from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET

ESSENTIALS are the registered trademarks of Syncfusion, Inc.

Technical Reviewer: James McCaffrey

Copy Editor: Courtney Wright

Acquisitions Coordinator: Tres Watkins, content development manager, Syncfusion, Inc.

Proofreader: Jacqueline Bieringer, content producer, Syncfusion, Inc.

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story Behind the Succinctly Series of Books .. 7

About the Author ... 9

Acknowledgements ..10

Introduction ...11

Chapter 1 Setup ...12

Project overview ...12

Installation ..12

Setting up an editor ..15

Creating the app ...15

Creating a virtual device ...18

Testing our setup ..22

Hot reloading ..27

Summary ..29

Chapter 2 App Fundamentals..30

Quick intro ..30

Rewriting—main.dart ..31

Project structure ...34

Bottom-to-top coding approach ..35

Writing utils.dart ..36

Writing model.dart ..43

Creating the database—dbhelper.dart ..48

Inserting a new document—dbhelper.dart ..53

Getting the list of documents—dbhelper.dart ..53

Getting a specific document—dbhelper.dart ...54

5

Counting documents—dbhelper.dart ..55

Updating and deleting documents—dbhelper.dart ..57

Summary ..58

Chapter 3 App UI—Document Details ...59

Quick intro ..59

Document Details ...59

Menu options ..61

Stateful widget ..62

Initializing text controllers and variables ...65

Choosing a date ...67

Deleting a document ..70

Saving a document ...72

Submitting the form ..75

Building the UI ..76

Scaffold ..81

AppBar ...81

Body ...82

Document Name and Expiry Date ..83

Document Name field ...84

Expiry Date field ...84

Alert fields ..85

Save button ..87

Summary ..88

Chapter 4 App UI—Main Screen ..89

Quick intro ..89

Getting started: main menu option ..90

6

Main stateful widget ..90

Getting a list of documents ...92

Checking dates...95

Navigating to the document details ...96

Resetting the local data ..97

Selecting the menu option .. 100

Building the list of documents ... 100

Finalizing the main screen .. 103

Summary .. 109

Appendix—Full Code .. 111

Full main.dart code ... 111

Full utils.dart code .. 111

Full dbhelper.dart code ... 114

Full model.dart code ... 117

Full docdetail.dart code .. 118

Full doclist.dart code .. 124

Full Pubspec.yaml code ... 128

Full Android Studio project ... 129

7

The Story Behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the

S

8

authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
https://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

9

About the Author

Ed Freitas is a consultant on software development applied to customer success, mostly related
to financial process automation, accounts payable processing, and data extraction.

He really likes technology and enjoys playing soccer, running, traveling, life hacking, learning,

and spending time with his family.

You can reach him at: https://edfreitas.me

https://edfreitas.me/

10

Acknowledgements

Many thanks to all the people from the amazing Syncfusion team who contributed to this book
and helped it become a reality—especially Jacqueline Bieringer, Tres Watkins, Darren West,
and Graham High.

The manuscript manager, Jacqueline Bieringer from Syncfusion, and the technical editor,

James McCaffrey from Microsoft Research, thoroughly reviewed the book's organization, code

quality, and overall accuracy. Thank you both.

This book is dedicated to Mi Chelin, Lala, and Tita, who inspire me every day and light up my

path ahead—God bless you all, always.

http://www.syncfusion.com/
https://jamesmccaffrey.wordpress.com/
https://www.microsoft.com/en-us/research/people/jammc/

11

Introduction

With the rapid rise of cross-platform mobile frameworks such as Ionic, React Native, and

Xamarin, the folks at Google decided to step into the game and develop their own framework

with support for both Android and iOS using the same codebase—this is how Flutter came to

be.

Flutter is an open-source mobile application development SDK primarily developed and

sponsored by Google, used for developing applications for Android and iOS—as well as being

the primary method of creating applications for the Google Fuchsia operating system.

Flutter is written in C, C++, and Dart, and uses the Skia Graphics Engine. It offers a rich set of

fully customizable widgets for building native interfaces, including the beautiful Material Design

library and Cupertino (iOS-flavored) widgets, rich motion APIs, smooth natural scrolling,

platform awareness, and hot reload—which helps to quickly build UIs without losing state on

emulators, simulators, and any hardware for iOS and Android.

All these great features have helped Flutter take off very quickly, and developers are flocking to

the framework. It’s also one of the trending projects in GitHub, which has helped it gain even

more popularity.

With Flutter gaining momentum, it seems unlikely that it will fade away anytime soon, so I

decided to give it a whirl and write an application with it. My personal experience: I was blown

away. I felt immediately productive, even though I had never programmed in Dart before.

Throughout this book, I want to go on that same journey with you. We’ll do this by creating a

fully functional app, which will allow you to get a good grasp of the framework—whether you are

coming from another mobile development framework, or have no previous mobile development

experience.

I’m quite excited to embark on this journey with you. I hope that by the end of it, you’ll have a

great impression of the framework and be able to assess whether Flutter is the right choice for

your mobile development needs. So, without further ado, let’s get going.

https://ionicframework.com/
https://facebook.github.io/react-native/
https://visualstudio.microsoft.com/xamarin/
https://flutter.io/
https://www.android.com/
https://developer.apple.com/ios/
https://en.wikipedia.org/wiki/Google_Fuchsia
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://www.dartlang.org/
https://skia.org/
https://material.io/design/
https://github.com/flutter/flutter

12

Chapter 1 Setup

Project overview

The application that we’ll be building throughout this book is one that we can use to keep track

of important personal documents that have an expiration date, such as passports, driver’s

licenses, or credit cards.

This type of application is handy to have so we know when we need to renew these important

documents before they expire. If you have read my other book, Electron Succinctly, this is the

same application concept we explored back then.

Using the Dart programming language with Flutter, we will take our application one step

further—we’ll also explore how to use a local SQLite database.

Awesome—let’s get our engines ready so we can start setting up our development environment

straight away.

Installation

The Flutter setup is incredibly easy, with all the installation steps well documented within the

official Flutter documentation site.

I’ll be using Windows 10, so I’ll be describing setup steps and information related to this

operating system; however, there are also easy-to-follow setup guidelines for both macOS and

Linux.

On Windows, there are some essential system requirements that need to be in place, which

include having PowerShell 5.0 (or later) and Git for Windows 2.X (or later) installed.

Even though you can write Flutter apps in any editor of your choice—personally, I’m a big fan of

Visual Studio Code—Flutter relies on a full installation of Android Studio to supply its Android

platform dependencies. You’ll also need to set up an Android device emulator. These steps are

described in the official documentation.

With the prerequisites in place for Windows, all we need to do is download the installation

bundle of the Flutter SDK—at the time of writing, it is Flutter’s 1.0.0 stable version for Windows.

Once you’ve downloaded the zip file, extract it to a desired folder within your drive, such as

C:\Flutter. Don’t extract the Flutter files to C:\Program Files or C:\Program Files (x86), which

require elevated or admin permissions.

Once the files are in the desired folder, locate the file Flutter_console.bat file—this is how it

looks on my machine.

https://www.syncfusion.com/ebooks/electron-succinctly
https://www.dartlang.org/
https://flutter.dev/docs/get-started/install
https://flutter.dev/docs/get-started/install/windows
https://flutter.io/docs/get-started/install/macos
https://flutter.io/docs/get-started/install/linux
https://docs.microsoft.com/en-us/powershell/scripting/install/installing-windows-powershell?view=powershell-6
https://git-scm.com/download/win
https://code.visualstudio.com/
https://developer.android.com/studio/
https://flutter.io/docs/get-started/install/windows
https://storage.googleapis.com/flutter_infra/releases/stable/windows/flutter_windows_v1.0.0-stable.zip

13

Figure 1-a: The Flutter SDK files

In principle, you are now ready to run the Flutter console by executing the Flutter_console.bat

file. It’s recommended—although not strictly necessary—to add the Flutter\Bin folder to the

System Path Environment variable in Windows.

If you are unsure how to add a folder to the Windows Path variable, please refer to this nice

article that explains how to do it, step by step, with screenshots.

In my machine, this looks as follows.

Figure 1-b: Flutter added to the Path variable in Windows

With the SDK file in place, we can now run the Flutter_console.bat file—this is what you

should see.

https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/

14

Figure 1-c: The Flutter console running

On the prompt, type the following command to check if Flutter is fully operational.

Code Listing 1-a: The “flutter doctor” command

flutter doctor

After you execute this command, you will get a result with any issues found—in my case,

because I had previously installed Android Studio and Visual Studio Code, I get the following

information.

When you run the Android Studio installer, please make sure you follow the official

documentation so that you end up with a successful Android Studio and SDK setup.

Figure 1-d: Results from running the flutter doctor command

In my case, Flutter is telling me that I need to run the flutter doctor --android-licenses

command to resolve an issue with some Android licenses not being accepted.

It also highlighted that I don’t have a physical device connected, which is fine for now.

https://developer.android.com/studio/
https://code.visualstudio.com/
https://developer.android.com/studio/install

15

Make sure that you resolve all the conflicts highlighted by the flutter doctor command

before proceeding.

Setting up an editor

Once you have completed all the installation steps, it is necessary to set up Flutter to work with

your editor of choice. Although I usually use Visual Studio Code for my projects, this time I

decided to use Android Studio to code our Flutter application—to me, it felt more natural, and a

better fit for mobile development.

The official Flutter documentation describes how to configure Android Studio (IntelliJ) and Visual

Studio Code to work with Flutter—please follow these steps.

If you will also be using Android Studio, once you have followed the steps described, you should

see the Dart and Flutter plugins installed. On my machine, this looks as follows.

Figure 1-e: The Dart and Flutter plugins installed on Android Studio

Creating the app

Once your editor of choice has been correctly set up following the official documentation

guidelines and my previous suggestions, it’s time to perform a quick test. We’ll create a demo

application from one of the predefined templates, and then experience the “hot reload”

mechanism after making a change to the app.

https://flutter.io/docs/get-started/editor

16

The official documentation, which covers the steps that are described and explained in this

section, is worth checking.

Open Android Studio and navigate to File > New > New Flutter Project. The following screen

will be displayed.

Figure 1-f: Create new Flutter project option (step 1)

Choose the Flutter Application option, and then click Next. We’ll then be presented with a

screen where we can enter the Project name, Flutter SDK path, Project location, and a

Description for the application—we can see this as follows.

https://flutter.dev/docs/get-started/test-drive?tab=androidstudio

17

Figure 1-g: Create new Flutter project option (step 2)

Make sure the Flutter SDK path text field specifies the correct folder location of the SDK, as

previously explained. With those options entered, click Next.

In the final step of the app creation process, we are asked to enter the Company domain and

include (if applicable) Kotlin support for Android code and Swift support for iOS code—in

our case, there’s no need to include these options.

The following figure shows the final step of the application creation screen.

18

Figure 1-h: Create new Flutter project option (step 3)

To finalize the creation of the demo application, click Finish. With the demo application created,

make sure you have a virtual device created and ready so we can quickly test the app.

Creating a virtual device

Let’s quickly go over the steps required to create a virtual device. With Android Studio opened,

go to the Tools menu and click on the AVD Manager option, which will display the following

screen.

https://developer.android.com/studio/run/managing-avds

19

Figure 1-i: Creating a virtual device (step 1)

Then, click Create Virtual Device, which will display the following window with all the available

virtual devices that can be created for different categories, such as: phones, TV, tablets, and

wearable devices.

I’m going to select the Nexus 6 model from the Phone category, but feel free to choose any

other.

Figure 1-j: Creating a virtual device (step 2)

20

Once you have your model selected, click Next. You will be prompted to select one of the

available device images.

Figure 1-k: Creating a virtual device (step 3)

I’m going with the first recommended option from the available list; however, you can choose

any other. It’s important to choose an image that plays well with your computer’s host operating

system. In essence, for emulator performance reasons, it’s not recommended to choose an

ARM-based image if your computer’s host operating system is based on a x86 architecture.

If you’ve chosen a different image than the one highlighted in Figure 1-k you might have to

download the image, using the Download link next to the image Release Name field.

Once the image has been selected (and downloaded, if applicable), click Next to continue to the

last step.

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/X86

21

Figure 1-l: Creating a virtual device (step 4)

The last step contains the configuration details for the virtual device image, which you can

normally leave to the default options, and then simply click Finish.

Awesome—you now have created a virtual device. You can create more than one if you wish,

as it might help you test your application with multiple devices. In my case, I’ve also created

another virtual device for a Pixel 2 XL phone API 28, which looks as follows.

22

Figure 1-m: Virtual device—Android emulator

Testing our setup

With our virtual device in place, it’s now time to run the application we have created and see

what it does.

To do that, select the Open Android Emulator option from the Android SDK built for x86

drop-down list, which is next to the run button. Once the Android emulator is opened, you’ll be

able to execute the application when you click run.

Figure 1-n: The emulator drop-down and run button

Try to run the application to see what happens—in my case, I get the following Android Studio

console output.

23

Code Listing 1-b: Console output when running the application

Launching lib\main.dart on Android SDK built for x86 in debug mode...

Initializing gradle...

Resolving dependencies...

* Error running Gradle:

ProcessException: Process
"C:\Projects\test\flutter_app\android\gradlew.bat" exited abnormally:

> Configure project :app

Checking the license for package Android SDK Build-Tools 28.0.3 in
C:\Users\EdFreitas\AppData\Local\Android\sdk\licenses

Warning: License for package Android SDK Build-Tools 28.0.3 not accepted.

FAILURE: Build failed with an exception.

* Where:

Build file 'C:\Projects\test\flutter_app\android\build.gradle' line: 24

* What went wrong:

A problem occurred evaluating root project 'android'.

> A problem occurred configuring project ':app'.

 > Failed to install the following Android SDK packages as some
licences have not been accepted.

 build-tools;28.0.3 Android SDK Build-Tools 28.0.3

 To build this project, accept the SDK license agreements and install
the missing components using the Android Studio SDK Manager.

 Alternatively, to transfer the license agreements from one
workstation to another, see http://d.android.com/r/studio-ui/export-
licenses.html

 Using Android SDK: C:\Users\EdFreitas\AppData\Local\Android\sdk

* Try:

24

Run with --stacktrace option to get the stack trace. Run with --info or -
-debug option to get more log output. Run with --scan to get full
insights.

* Get more help at https://help.gradle.org

BUILD FAILED in 1s

 Command: C:\Projects\test\flutter_app\android\gradlew.bat
app:properties

Finished with error: Please review your Gradle project setup in the
android/ folder.

If you didn’t get this console output message after running your application, awesome—you may

skip the rest of this section and go directly to the “Hot reloading” section.

If you did, then by carefully reviewing this output information, we find a reference to this

http://d.android.com/r/studio-ui/export-licenses.html URL that redirects to here.

This article explains how Gradle can automatically download packages that might be missing,

and that are required when running an application.

We can also see that the last line of the message indicates to review the Gradle project setup in

the Android project folder—which refers to the Build.gradle file found within the Android folder of

our application. We can see this in the following screenshot.

https://developer.android.com/studio/intro/update#download-with-gradle
https://gradle.org/

25

Figure 1-o: The project structure

Let’s open the Build.gradle file and inspect its content. Notice in my case how it depends on

com.android.tools.build:gradle:3.2.1—we can see this in the screenshot that follows.

Figure 1-p: The Build.gradle file contents

26

The previous console output gives us a hint of what the problem might be: License for

package Android SDK Build-Tools 28.0.3 not accepted.

What this is telling us is that it wasn’t able to run the application with this

com.android.tools.build:gradle:3.2.1 dependency, because I have no license for it.

In other words, that specific com.android.tools.build:gradle version probably didn’t get

installed when I went through the Android Studio setup process.

In that case, the solution is to use a version of the com.android.tools.build:gradle

dependency that was installed during the Android Studio setup process—which can be one

version lower than the one mentioned on the Build.gradle file.

To resolve the problem, all I need to do is change that line on the Build.gradle file from

com.android.tools.build:gradle:3.2.1 to com.android.tools.build:gradle:3.2.0.

Figure 1-q: The Build.gradle file contents edited

After saving the change to the Build.gradle file, if I now click Run, I’ll get the following build

console output within Android Studio.

Code Listing 1-c: Console output when running the application (after updating Build.gradle)

Launching lib\main.dart on Android SDK built for x86 in debug mode...

Initializing gradle...

Resolving dependencies...

Gradle task 'assembleDebug'...

Built build\app\outputs\apk\debug\app-debug.apk.

Awesome—that’s so much better! The application has been built, and it is running. We can see

this on the Android emulator as follows.

27

Figure 1-r: The demo app running

With the building issues sorted, let’s now explore how Flutter’s “hot reload” mechanism works,

and what it does.

Hot reloading

Hot reloading is one of the coolest features of Flutter, and basically means that if a change to

the code is made while the application is running, that change is almost immediately reflected

within the running application.

Let’s give hot reloading a try. With the application running, let’s go to the main.dart file under the

lib folder of our demo application, and locate the following code.

Code Listing 1-d: Snippet of code of main.dart

Text(
 'You have pushed the button this many times:',
)

28

Let’s replace the word pushed with the word clicked. The code should now look as follows.

Code Listing 1-e: Snippet of code of main.dart

Text(
 'You have clicked the button this many times:',
)

Figure 1-s shows the source code and the application running before the change.

Figure 1-s: App running (before the change)

Figure 1-t shows the source code and the application running after the change.

29

Figure 1-t: App running (after the change)

As you can clearly see, hot reloading worked. Something to notice about hot reloading is that

the changes take a few seconds to propagate and become effective, as the application is

basically redeployed to the emulator or device when changes take place.

Web developers will notice that hot reloading in Flutter is slower than when developing web

applications. This is because during web development, hot reloading only applies to the HTML,

CSS, or JavaScript being modified, whereas with Flutter, the actual application runtime needs to

be synced to the device.

Nevertheless, Flutter’s hot-reloading mechanism is impressive and very useful, as it helps us

avoid having to stop the app and restart it.

Summary

The goal of this chapter was to set up Flutter and get started—that’s exactly what we managed

to achieve.

Next, we’ll dive straight into the code and start writing the fundamental pillars of our app. It’s

going to be a lot of fun, as we’ll look at how to design our app’s UI and implement its essential

logic.

30

Chapter 2 App Fundamentals

Quick intro

To get a sense of what we will be building throughout this book, let’s have a look at how the

main screen of our finished application will look—we can see this as follows.

Figure 2-a: The finished app

We can see that the app contains a list of documents, each with the remaining days before they

expire and their expiration date.

The app’s UI is based on Google’s Material Design library, which comes out of the box with

Flutter.

 Note: You can find all the finished Dart source code files and the Pubspec.yaml
file for this app in the appendix at the end of the book.

31

Rewriting—main.dart

With the setup phase behind us, it’s now time to start building the foundations of our application.

To do that, go to the main.dart file found under the lib folder, and remove all the existing code it

contains. With all the out-of-the-box code removed from the main.dart file, let’s add the following

code.

Code Listing 2-a: The new, finished main.dart code

import 'package:flutter/material.dart';
import './ui/doclist.dart';

void main() => runApp(DocExpiryApp());

class DocExpiryApp extends StatelessWidget
{
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'DocExpire',
 theme: new ThemeData(
 primarySwatch: Colors.indigo,
),
 home: DocList(),
);
 }
}

What have we done here? Let’s dissect this code into smaller pieces to understand it better.

Code Listing 2-b: The new, finished main.dart code (part 1)

import 'package:flutter/material.dart';
import './ui/doclist.dart';

The first line imports the Material Design library, which we will use to create our app’s widgets

(UI components).

The second line references a file that we have not created yet within our application, which will

contain the logic for creating and displaying the list of documents, showing whether they have

expired or not.

Next, we invoke the main method, which is the app’s main entry point. This method invokes

runApp, to which a new instance of the DocExpiryApp class is passed.

32

Code Listing 2-c: The new, finished main.dart code (part 2)

void main() => runApp(DocExpiryApp());

Following that, we declare the DocExpiryApp class, which inherits from the StatelessWidget

class. This is one of two types of widget classes that Flutter supports.

Code Listing 2-d: The finished DocExpiryApp code

class DocExpiryApp extends StatelessWidget
{
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'DocExpire',
 theme: new ThemeData(
 primarySwatch: Colors.indigo,
),
 home: DocList(),
);
 }
}

A StatelessWidget describes a widget that does not require mutable state—in other words, it

is a widget without a state. You can find more details in the official documentation.

Basically, every UI component in Flutter is a widget, either with state, StatefulWidget, or

without state, StatelessWidget.

Within the DocExpiryApp class, we are overriding the Build method inherited from the

StatelessWidget class, which is responsible for returning a Widget object to its caller, and

thus building the UI element.

So, in essence, the Build method creates a MaterialApp widget, the app’s main component.

The home property is assigned to the result that will be returned from the DocList method. The

DocList method is imported from doclist.dart (yet to be created), which will return the list of

documents to be displayed.

To better understand the relationship between what you see in the code and what is displayed

on the device’s screen when the app runs, let’s have a look at the following diagram.

https://docs.flutter.io/flutter/widgets/StatelessWidget-class.html
https://docs.flutter.io/flutter/widgets/StatefulWidget-class.html

33

Figure 2-b: Relationship between the main.dart code and the app’s main UI

The MaterialApp widget has properties that determine some of its functionality. The title

property needs no explanation, but the debugShowCheckedModeBanner and theme properties

do.

As its name indicates, the debugShowCheckedModeBanner property is used for displaying a

smaller banner that indicates that the app is running in debug mode when the property is set to

true.

This is how the app’s main screen would look with the debugShowCheckedModeBanner property

set to true. Notice the small Debug banner on the top, right-hand side of the screen.

Figure 2-c: The app’s main UI with debugShowCheckedModeBanner set to true

The theme property basically represents the main color used for the app’s UI, which in this case

is indigo. More information about theming in Flutter can be found in the official documentation.

If you’re tempted to run the app after having made these changes to main.dart, you’ll get some

compilation errors. This is because we haven’t yet created Doclist.dart—but we are referencing

it in the code.

https://flutter.io/docs/cookbook/design/themes

34

Also, we have assigned to the home property the value returned by the DocList method—also

part of Doclist.dart.

So, if you would like to run the app at this stage and check how it looks, you’ll have to wait until

we have written some more code, specifically within the doclist.dart file.

Project structure

With the main.dart code rewritten, let’s explore how the current project structure looks, what

other files and folders we would need to create, and what the finished application project

structure will look like.

Figure 2-d: The app’s project folder structure comparison

As we can see in the preceding diagram, the main differences between the current project folder

structure and the finished one are the subfolders and files found under the project’s lib folder,

which we will create throughout this book.

The lib folder is where all our app’s source code is going to be organized. To make the code

organization easy, we’ll have three subfolders:

• The model folder, which will be used to keep the object model that will be used for

storing information on the SQLite database.

35

• The ui folder, which is where we will have all the logic related to the app’s UI and

navigation.

• The util folder, which will contain utility, general purpose code, and database helper

classes and methods.

By using this structure, we can keep our source code organized. Notice that this is not the only

possible project folder structure; you might want to name your folders differently or organize

them in another way. Flutter doesn’t impose a specific way of organizing source files—the way

you organize your code is entirely up to you.

However, I suggest you keep this structure, as it will make it easier to follow along with the

various stages of the development of the application.

Bottom-to-top coding approach

For our application to be fully functional, we need to be able to display the list of documents. To

be able to do that, we need a database model, database helper functions, a detail page that will

be used for each document, and some generic utility functions.

All this code needs to be written before we can attempt to display the list of documents. This

means that doclist.dart will be the last module we will write for our application.

The first module we will write is going to be called utils.dart, which will contain generic and form

validation functions that we will need throughout the application.

We’ll be coding using a bottom-to-top approach, where we write the basic building blocks and

then build up based on that. This approach will look as follows.

Figure 2-e: Bottom-to-top coding approach

Let’s move on, starting with the utils.dart file.

36

Writing utils.dart

To be able to properly validate new documents that we will enter using our application, we need

to have some general validation routines. This is the main purpose of utils.dart.

To get a visual understanding of what this means, have a look at the following screenshot that

represents the finished UI for adding a new document.

Figure 2-f: App screen to enter a new document

We can immediately see that there are two validations: one for checking that the Document

Name field is not empty, and another that checks that the Expiry Date field is a valid future date.

This is the logic we’ll add to the utils.dart file—let’s go ahead and do that.

To organize our code properly, create a subfolder under the lib folder called util—this is where

we will create the utils.dart file.

You can do this by right-clicking on the lib folder within Android Studio, and then choosing New

> Directory.

37

Next, select the lib folder, right-click, and choose New > File.

Figure 2-g: New file option

When prompted, enter the name of the file: utils.dart.

Figure 2-h: New file window

With the utils.dart file created under the lib\util folder path, let’s add the following code to it.

Code Listing 2-e: Full utils.dart code

import 'package:intl/intl.dart';

class Val {
 // Validations
 static String ValidateTitle(String val) {
 return (val != null && val != "") ? null : "Title cannot be empty";
 }

 static String GetExpiryStr(String expires) {
 var e = DateUtils.convertToDate(expires);
 var td = new DateTime.now();

 Duration dif = e.difference(td);
 int dd = dif.inDays + 1;
 return (dd > 0) ? dd.toString() : "0";
 }

38

 static bool StrToBool(String str) {
 return (int.parse(str) > 0) ? true : false;
 }

 static bool IntToBool(int val) {
 return (val > 0) ? true : false;
 }

 static String BoolToStr(bool val) {
 return (val == true) ? "1" : "0";
 }

 static int BoolToInt(bool val) {
 return (val == true) ? 1 : 0;
 }
}

class DateUtils {
 static DateTime convertToDate(String input) {
 try
 {
 var d = new DateFormat("yyyy-MM-dd").parseStrict(input);
 return d;
 } catch (e) {
 return null;
 }
 }

 static String convertToDateFull(String input) {
 try
 {
 var d = new DateFormat("yyyy-MM-dd").parseStrict(input);
 var formatter = new DateFormat('dd MMM yyyy');
 return formatter.format(d);
 } catch (e) {
 return null;
 }
 }

 static String convertToDateFullDt(DateTime input) {
 try
 {
 var formatter = new DateFormat('dd MMM yyyy');
 return formatter.format(input);
 } catch (e) {
 return null;
 }
 }

39

 static bool isDate(String dt) {
 try
 {
 var d = new DateFormat("yyyy-MM-dd").parseStrict(dt);
 return true;
 } catch (e) {
 return false;
 }
 }

 static bool isValidDate(String dt) {
 if (dt.isEmpty || !dt.contains("-") || dt.length < 10) return false;

 List<String> dtItems = dt.split("-");
 var d = DateTime(int.parse(dtItems[0]),
 int.parse(dtItems[1]), int.parse(dtItems[2]));

 return d != null && isDate(dt) &&
 d.isAfter(new DateTime.now());
 }

 // String functions
 static String daysAheadAsStr(int daysAhead) {
 var now = new DateTime.now();
 DateTime ft = now.add(new Duration(days: daysAhead));
 return ftDateAsStr(ft);
 }

 static String ftDateAsStr(DateTime ft) {
 return ft.year.toString() + "-" +
 ft.month.toString().padLeft(2, "0") + "-" +
 ft.day.toString().padLeft(2, "0");
 }

 static String TrimDate(String dt) {
 if (dt.contains(" ")) {
 List<String> p = dt.split(" ");
 return p[0];
 }
 else
 return dt;
 }
}

What is going on here? As you might have noticed, the code contains two classes: Val and

DateUtils. There’s quite a bit of code within the utils.dart file; it’s not incredibly important right

40

now to understand each line of code within it, but rather, to understand how the main parts

relate with each other.

Let’s explore the relationship between both classes and the document entry application screen

we looked at before.

Figure 2-i: Interconnection between the document entry screen and utils.dart code

As you can see in Figure 2-i, the relationship among the parts and the application is very clear

and easy to understand. Most of the methods within the Val and DateUtils classes are

methods that we will need later as we progressively build our application.

Right now, let’s quickly go over the ones that are essential and that directly relate to the

document entry screen. Let’s first have a look at the ValidateTitle method.

Code Listing 2-f: ValidateTitle method (utils.dart)

static String ValidateTitle(String val) {
 return (val != null && val != "") ? null : "Title cannot be empty";
}

As we can see, this method is very simple—it basically evaluates, through a ternary conditional

expression, if the value of the parameter val—which represents the name of the document

entered through the document entry screen—is an empty String object.

If it is not, then null is returned, which means that the validation has passed. If it is an empty

String, then a message is returned, indicating that the string cannot be empty—this message

is the one displayed in the document entry screen.

41

Now, let’s explore the GetExpiryStr method and what it does. We can see this in the listing

that follows.

Code Listing 2-g: GetExpiryStr method (utils.dart)

static String GetExpiryStr(String expires) {
 var e = DateUtils.convertToDate(expires);
 var td = new DateTime.now();

 Duration dif = e.difference(td);
 int dd = dif.inDays + 1;
 return (dd > 0) ? dd.toString() : "0";
}

This method is also quite simple. The first instruction converts the document’s expiry date,

represented by the expires variable, into a DateTime object by invoking the convertToDate

method from the DateUtils class.

What follows is that the current DateTime is obtained by calling the now method. Then, the

difference between the document’s expiry date and the current date is calculated by calling the

difference method.

If the result of difference is positive, then that value is converted to a String by calling the

toString method, and then returned. If the value is negative or zero, then “0” is returned as a

String object.

Now, let’s explore the convertToDate method from the DateUtils class—we can see this in

the listing that follows.

Code Listing 2-h: convertToDate method (utils.dart)

static DateTime convertToDate(String input) {
 try {
 var d = new DateFormat("yyyy-MM-dd").parseStrict(input);
 return d;
 } catch (e) {
 return null;
 }
}

This method is also very simple—it basically takes the date as an input variable and attempts

to parse it using the format “yyyy-MM-dd” by calling the parseStrict method.

If successful, then the parsed value d is returned; otherwise, null is returned.

Awesome—we are almost done covering all we need to know about the utils.dart code. There’s

just one small piece missing: the first line of utils.dart.

42

Code Listing 2-i: Import statement (utils.dart)

import 'package:intl/intl.dart';

This line basically tells Flutter that utils.dart needs to import a package called intl.dart—

which is a Dart library used for supporting internationalization and localization capabilities.

The DateFormat method that is invoked from the convertToDate method is part of the

intl.dart library.

However, there’s still one thing missing—we need to import this package into our Flutter project.

We can do this by opening the Pubspec.yaml file found within our main project folder, and then

installing the package as follows.

Figure 2-j: Adding the package to Pubspec.yaml

Once the package has been added to the Pubspec.yaml file, we’ll need to run the flutter

packages get command, which can be done within Android Studio directly with one click—this

is highlighted in Figure 2-j.

Once you’ve clicked the Packages get option, you should see the following output in the

Android Studio messages window.

https://pub.dartlang.org/packages/intl
https://pub.dartlang.org/packages/intl#-installing-tab-

43

Figure 2-k: Message output in Android Studio after adding a package

Our utils.dart code can now use the DateFormat method, and we are done with utils.dart.

Writing model.dart

With utils.dart covered, let’s move on and create the model.dart file, which represents the data

model that will be used for storing and retrieving document data.

To keep things organized, let’s create a model subfolder under the lib folder of our application.

Inside this model subfolder, let’s create the model.dart file—we can do this the same way we

created the util subfolder and utils.dart with Android Studio.

With the model.dart file created, let’s add the following code to it.

Code Listing 2-j: Full model.dart code

import '../util/utils.dart';

class Doc
{
 int id;
 String title;
 String expiration;

 int fqYear;
 int fqHalfYear;
 int fqQuarter;
 int fqMonth;

 Doc(this.title, this.expiration, this.fqYear,
 this.fqHalfYear, this.fqQuarter, this.fqMonth);

 Doc.withId(this.id, this.title, this.expiration, this.fqYear,
 this.fqHalfYear, this.fqQuarter, this.fqMonth);

44

 Map<String, dynamic> toMap() {
 var map = Map<String, dynamic>();

 map["title"] = this.title;
 map["expiration"] = this.expiration;

 map["fqYear"] = this.fqYear;
 map["fqHalfYear"] = this.fqHalfYear;
 map["fqQuarter"] = this.fqQuarter;
 map["fqMonth"] = this.fqMonth;

 if (id != null) {
 map["id"] = id;
 }

 return map;
 }

 Doc.fromOject(dynamic o) {
 this.id = o["id"];
 this.title = o["title"];
 this.expiration = DateUtils.TrimDate(o["expiration"]);

 this.fqYear = o["fqYear"];
 this.fqHalfYear = o["fqHalfYear"];
 this.fqQuarter = o["fqQuarter"];
 this.fqMonth = o["fqMonth"];
 }
}

Let’s break this into smaller parts so we can understand what this code does.

First, we import a reference to the utils.dart module we previously created—this is because the

fromObject method invokes the TrimDate method from the DateUtils class.

Code Listing 2-k: Importing utils.dart in model.dart

import '../util/utils.dart';

Then, we have a Doc class, which in our data model represents the document that will be

written and read to the SQLite embedded database we will be using. Let’s first explore the

properties of the Doc class.

Code Listing 2-l: Doc class properties

// Previous code…

45

class Doc
{
 int id;
 String title;
 String expiration;

 int fqYear;
 int fqHalfYear;
 int fqQuarter;
 int fqMonth;

 // The rest of the Doc class code
}

To better understand how these properties relate to a document database record, which is

going to be stored within an SQLite table, let’s look at the following diagram.

Figure 2-l: Data model fields

We can clearly establish the relationship between each of the Doc class properties and each of

the columns as they will be stored in the SQLite database.

Our Doc class is the object representation of a document record stored in the database.

Moving on, we can see that our class has two constructors—one that will be invoked when

creating a new document, and the other for existing documents in the database. This is shown

in the following code.

Code Listing 2-m: Doc class constructors

// Previous code…

46

class Doc
{
 // Doc class properties.

 // Constructor used if we don’t want to assign an id immediately.
 Doc(this.title, this.expiration, this.fqYear,
 this.fqHalfYear, this.fqQuarter, this.fqMonth);
 // Constructor used if we want to assign an id immediately
 Doc.withId(this.id, this.title, this.expiration, this.fqYear,
 this.fqHalfYear, this.fqQuarter, this.fqMonth);

 // Rest of the Doc class code.
}

The first constructor (Doc) is used when we want to create an instance of the Doc class and we

don’t want to assign a value to the id property.

The second constructor (Doc.withId) is used when we want to create an instance of the Doc

class and we want to assign a value to the id property right away.

When we create a new document or access an existing one, we’ll need to invoke one of these

constructors to create an instance of the Doc class—which is how we represent a document

within our application.

Now, let’s explore the rest of the Doc class code.

Code Listing 2-n: Rest of the Doc class code

// Previous code…

class Doc
{
 // All the previous code

 Map<String, dynamic> toMap() {
 var map = Map<String, dynamic>();

 map["title"] = this.title;
 map["expiration"] = this.expiration;

 map["fqYear"] = this.fqYear;
 map["fqHalfYear"] = this.fqHalfYear;
 map["fqQuarter"] = this.fqQuarter;
 map["fqMonth"] = this.fqMonth;

 if (id != null) {
 map["id"] = id;

47

 }

 return map;
 }

 Doc.fromOject(dynamic o) {
 this.id = o["id"];
 this.title = o["title"];
 this.expiration = DateUtils.TrimDate(o["expiration"]);

 this.fqYear = o["fqYear"];
 this.fqHalfYear = o["fqHalfYear"];
 this.fqQuarter = o["fqQuarter"];
 this.fqMonth = o["fqMonth"];
 }
}

The rest of the code consists of two methods—the toMap and fromObject methods. Let’s see

what each does. The toMap method is used when the document information needs to be written

to the database.

Code Listing 2-o: The toMap method

Map<String, dynamic> toMap() {
 var map = Map<String, dynamic>();

 map["title"] = this.title;
 map["expiration"] = this.expiration;

 map["fqYear"] = this.fqYear;
 map["fqHalfYear"] = this.fqHalfYear;
 map["fqQuarter"] = this.fqQuarter;
 map["fqMonth"] = this.fqMonth;

 if (id != null) {
 map["id"] = id;
 }

 return map;
}

The first instruction of the toMap method is used to create an instance of Map<String,

dynamic>. For further information regarding the usage of Map within the Dart programming

language, please refer to the official documentation.

Within the toMap method, the existing Doc instance property values are assigned to their

equivalent properties within a Map object—which is convenient for writing the data to the

https://api.dartlang.org/stable/2.1.0/dart-core/Map-class.html

48

database. The toMap method returns a Map object back to its invoker—which, as we will see

later, is going to be a method that writes to the database.

Let’s now have a look at the fromObject method, which does the opposite of what the toMap

method does.

Code Listing 2-p: The fromObject method

Doc.fromOject(dynamic o) {
 this.id = o["id"];
 this.title = o["title"];
 this.expiration = DateUtils.TrimDate(o["expiration"]);

 this.fqYear = o["fqYear"];
 this.fqHalfYear = o["fqHalfYear"];
 this.fqQuarter = o["fqQuarter"];
 this.fqMonth = o["fqMonth"];
}

Essentially, the fromObject method receives a dynamic object as a parameter—which is

retrieved from the database—and the properties of this object are then assigned to their

respective counterpart properties within the Doc instance.

To recap: the toMap method is used when writing to the database, and the fromObject method

is used when reading from the database.

Creating the database—dbhelper.dart

With model.dart behind us, let’s now focus on an essential part of the application, which is the

database access layer and helper functions. Let’s create the dbhelper.dart file within the util

subfolder.

As the code for the dbhelper.dart file is quite extensive, I won’t paste it all straight away, but

instead we’ll take a look at each individual part, one by one.

Code Listing 2-q: The import statements—dbhelper.dart

import 'package:flutter/material.dart';
import 'package:sqflite/sqflite.dart';
import 'package:path_provider/path_provider.dart';

import 'dart:async';
import 'dart:io';

import '../model/model.dart';

49

In the import section, we can see that the first three instructions reference three packages that

we haven’t seen before.

The material.dart package is built into Flutter, and was automatically added to the

Pubspec.yaml file when the project was created. We can see this in the Pubspec.yaml file as

follows.

Figure 2-m: Built-in material and Flutter package

The following two lines refer to the sqflite.dart (a Flutter package used to access a SQLite

database) and path_provider.dart packages, which have not been added to the

Pubspec.yaml file yet. Let’s do this now.

Figure 2-n: Adding the sqflite and path_provider packages

All we’ve done is add both package names below intl, within the Pubspec.yaml file. After doing

that, click on the Packages get option, so both packages can get installed.

Following that are two import statements that reference the dart:async and dart:io libraries,

which will be used for performing async and file operations.

Finally, we can see the import statement that references the model.dart file, which we will need

to read and write documents to the database.

50

Next, let’s create the DbHelper class, which will contain all the helper functions we need to work

correctly with the database.

For now, let’s just add the names of the properties for the database table and fields—we can

see this as follows.

Code Listing 2-r: DbHelper class—dbhelper.dart

// Import statements… previous code.

class DbHelper {
 // Tables
 static String tblDocs = "docs";

 // Fields of the 'docs' table.
 String docId = "id";
 String docTitle = "title";
 String docExpiration = "expiration";

 String fqYear = "fqYear";
 String fqHalfYear = "fqHalfYear";
 String fqQuarter = "fqQuarter";
 String fqMonth = "fqMonth";

 // More code will follow…
}

As you can see, the code is self-explanatory—we have tblDocs, which indicates the name of

the table that will be used to store the documents, and following that, the names of each of the

fields contained within that table.

Next, let’s create the database entry point, which will be a singleton. This is because we want to

limit the instantiation of the DbHelper class to one instance only. We can do this as follows.

Code Listing 2-s: DbHelper class—dbhelper.dart (continued)

// Import statements… previous code.

class DbHelper {
 // Previous code

 // Singleton
 static final DbHelper _dbHelper = DbHelper._internal();

 // Factory constructor
 DbHelper._internal();

 factory DbHelper() {
 return _dbHelper;

https://en.wikipedia.org/wiki/Singleton_pattern

51

 }

 // Database entry point
 static Database _db;
}

// More code will follow…

The first thing we have done is declare the _dbHelper instance as a final variable, which

means that it is a single-assignment variable. Once assigned, its value cannot change—this is

what we want, as it needs to be a singleton.

That variable is assigned to the value returned by the class’ internal constructor, also known

as a Factory constructor, which is then declared.

This Factory constructor pattern is quite common in Dart, and it is primarily used for creating

singletons—this Stack Overflow thread explains this Dart pattern very well, in case you would

like to know more about it.

Next, we declare a static variable of type Database that will hold the reference to the

database entry point. The Database class is part of the sqflite library that we added to the

Pubspec.yaml file previously.

Following this, we’ll need to get a runtime reference to the database and initialize it—we can do

this as follows.

Code Listing 2-t: DbHelper class—dbhelper.dart (continued)

// Import statements… previous code.

class DbHelper {
 // Previous code

 Future<Database> get db async {
 if (_db == null) {
 _db = await initializeDb();
 }

 return _db;
 }

 // Initialize the database
 Future<Database> initializeDb() async {
 Directory d = await getApplicationDocumentsDirectory();
 String p = d.path + "/docexpire.db";
 var db = await openDatabase(p, version: 1, onCreate: _createDb);
 return db;
 }

https://www.dartlang.org/guides/language/language-tour#factory-constructors
https://stackoverflow.com/questions/12649573/how-do-you-build-a-singleton-in-dart
https://pub.dartlang.org/packages/sqflite

52

}

// More code will follow…

We can get the runtime reference to the database by using an async getter called db, which

returns a Future object that will reference the database. This is done by checking that _db is

not null, and then invoking the initializeDb method, which is responsible for opening the

database.

The initializeDb method returns a Future, which is the runtime reference to the database. It

does this by calling the openDatabase async method and passing the location of the database

file on the device—Docexpire.db.

The location of the file is determined by invoking the getApplicationDocumentsDirectory

method and concatenating it to the actual file name on the device—docexpire.db.

Notice how the openDatabase method has an onCreate parameter, which indicates the name

of the method that will be invoked the first time the database is opened. This will create the

actual database our app will need, the _createDb method, which we can see as follows.

Code Listing 2-u: DbHelper class—dbhelper.dart (continued)

// Import statements… previous code.

class DbHelper {
 // Previous code

 // Create database table
 void _createDb(Database db, int version) async {
 await db.execute(
 "CREATE TABLE $tblDocs($docId INTEGER PRIMARY KEY, $docTitle TEXT, "
 + "$docExpiration TEXT, " +
 "$fqYear INTEGER, $fqHalfYear INTEGER, $fqQuarter INTEGER, " +
 "$fqMonth INTEGER)"
);
 }
}

// More code will follow…

As you can see, the _createDb method simply calls the db.execute method and passes a

CREATE TABLE statement, which is responsible for creating the database table that will be used

for storing the information our app will use.

This is all the code required for initializing and creating the database. Next, we’ll explore how we

can add extra functionality to be able to query the database, and insert and delete from the

database.

53

Inserting a new document—dbhelper.dart

The next thing we need to do is to write a method that allows us to save a document to the

database. We can do this as follows.

Code Listing 2-v: DbHelper class—dbhelper.dart (continued)

// Import statements… previous code.

class DbHelper {
 // Previous code

 // Insert a new doc
 Future<int> insertDoc(Doc doc) async {
 var r;

 Database db = await this.db;
 try {
 r = await db.insert(tblDocs, doc.toMap());
 }
 catch (e) {
 debugPrint("insertDoc: " + e.toString());
 }
 return r;
 }
}

// More code will follow…

Notice that this insertDoc method reads the reference to the database (this.db), and then it

calls the db.insert method and passes the result of the doc.toMap method, which was

previously defined in model.dart.

Since we are dealing with a database insert operation, we wrap this code in a try-catch

block to prevent any unhandled exceptions from arising.

As you have seen, adding an item to the database is not so difficult. Notice, though, that all

database operations so far return a Future object, and the calls are async. The reason for this

is that you don’t want to have the application blocked while waiting for a database operation to

finish.

Getting the list of documents—dbhelper.dart

Now that we’ve seen how to insert a document, it’s important to understand how to we can

retrieve any document stored within the database. We can do this as follows.

Code Listing 2-w: DbHelper class—dbhelper.dart (continued)

54

// Import statements…previous code.

class DbHelper {
 // Previous code

 // Get the list of docs.
 Future<List> getDocs() async {
 Database db = await this.db;
 var r = await db.rawQuery(
 "SELECT * FROM $tblDocs ORDER BY $docExpiration ASC");
 return r;
 }
}

// More code will follow…

As you can see, the getDocs method that retrieves the list of documents from the database is

very simple. We can see a common pattern again—get the reference to the database using

this.db.

Then, the actual query to the database is executed by running the db.rawQuery method and

passing it the SQL query as a string parameter.

We can see that we are returning the result r in ascending order by the document’s expiration

date—docExpiration.

Next, let’s see how we can get a specific document from the database.

Getting a specific document—dbhelper.dart

Getting all the documents available in the database is useful when we want to build up the main

list of documents in our UI. However, if we want to modify a specific document that we

previously added, we’ll need to be able to retrieve that document from the database—this is

what we’ll do next.

Code Listing 2-x: DbHelper class—dbhelper.dart (continued)

// Import statements… previous code.

class DbHelper {
 // Previous code

 // Gets a Doc based on the id.
 Future<List> getDoc(int id) async {
 Database db = await this.db;
 var r = await db.rawQuery(

55

 "SELECT * FROM $tblDocs WHERE $docId = " + id.toString() + "");
 return r;
 }

 // Gets a Doc based on a String payload
 Future<List> getDocFromStr(String payload) async {
 List<String> p = payload.split("|");
 if (p.length == 2) {
 Database db = await this.db;
 var r = await db.rawQuery(
 "SELECT * FROM $tblDocs WHERE $docId = " + p[0] +
 " AND $docExpiration = '" + p[1] + "'");
 return r;
 }
 else
 return null;
 }
}

// More code will follow…

We have two ways of retrieving a specific document. One way is to retrieve the document by its

id (docId); this is what the getDoc method does. Another way is to retrieve it from the database

by its id and by the document’s expiration date (docExpiration)—this is what the

getDocFromString method does.

The getDoc method simply calls the db.rawQuery method and runs a query on the tblDocs

table. It retrieves the document where the docId has the same value as the id parameter—very

straightforward.

The getDocFromStr method is slightly more complex, but not too much. The difference is that

this method receives a String object payload, which contains two important bits of data,

separated by a pipe (|) character. The first part of the payload is docId, and the second part is

docExpiration.

The payload is split and each respective value concatenated onto the SQL query that gets

passed to the db.rawQuery method. The SQL query retrieves the document by checking for the

correct id and expiration date values.

By using these two methods, we can retrieve any specific document we need.

Counting documents—dbhelper.dart

Now that we know how to retrieve specific documents, we’ll also need to count how many

documents we have and retrieve the largest document ID from the database—this will be

important for changing the UI state later. So, let’s see how we can do this.

56

Code Listing 2-y: DbHelper class—dbhelper.dart (continued)

// Import statements… previous code.

class DbHelper {
 // Previous code

 // Get the number of docs.
 Future<int> getDocsCount() async {
 Database db = await this.db;
 var r = Sqflite.firstIntValue(
 await db.rawQuery("SELECT COUNT(*) FROM $tblDocs")
);
 return r;
 }

 // Get the max document id available on the database.
 Future<int> getMaxId() async {
 Database db = await this.db;
 var r = Sqflite.firstIntValue(
 await db.rawQuery("SELECT MAX(id) FROM $tblDocs")
);
 return r;
 }
}

// More code will follow…

The first method, getDocsCount, basically executes a SQL query that returns an int value,

which counts how many documents there are on the tblDocs table.

The second method, getMaxId, executes a SQL query that returns an int value, which

represents the maximum value existing on the tblDocs table for the id field of all documents. In

other words, it returns the largest existing document id value within the table.

As you can see, the only difference between these methods is that one uses the SQL COUNT

function and the other uses the SQL MAX function.

To be able to change the state of the UI, it’s important we have these functions so we can get

the number of documents in the database—this is main reason for having the getDocsCount

function.

We use the getMaxId function because when a new document is being added, we need to

make sure that this new document gets assigned an id value larger than the largest one

available on the tblDocs table. This is done so that each document has an id that is

consecutive to the previous one and is not repeated.

57

Updating and deleting documents—dbhelper.dart

We now almost have all the database functionality we require, but we are still missing an

important part—this is the ability to delete and update documents. Let’s add this code as

follows.

Code Listing 2-z: DbHelper class—dbhelper.dart (continued)

// Import statements… previous code.

class DbHelper {
 // Previous code.

 // Update a doc.
 Future<int> updateDoc(Doc doc) async {
 var db = await this.db;
 var r = await db.update(tblDocs, doc.toMap(),
 where: "$docId = ?", whereArgs: [doc.id]);
 return r;
 }

 // Delete a doc.
 Future<int> deleteDoc(int id) async {
 var db = await this.db;
 int r = await db.rawDelete(
 "DELETE FROM $tblDocs WHERE $docId = $id");
 return r;
 }

 // Delete all docs.
 Future<int> deleteRows(String tbl) async {
 var db = await this.db;
 int r = await db.rawDelete("DELETE FROM $tbl");
 return r;
 }
}

The updateDoc method is responsible for updating a specific document on the database, based

on the document’s id. This is done by invoking the db.update method by passing the resultant

object of the call to doc.toMap, which converts the document from a Dart object to its database

model equivalent.

The deleteDoc method removes a document from the tblDocs table by running a scoped SQL

DELETE statement, targeting a specific document id by invoking the db.rawDelete method.

Finally, the deleteRows method removes all the documents from the database. This is done by

calling the db.rawDelete method and running a SQL DELETE statement that is not scoped to

any specific document id.

58

Awesome—that concludes our dbhelper.dart file, which is responsible for all our app’s database

operations.

Summary

We’ve come a long way, and it’s been a detailed, but certainly interesting chapter. So far, we’ve

managed to lay out the foundations of our application and how it will be able to interact with the

database by adding the model and all the utilities and helper functions required.

In the next chapter, we’ll implement the UI by creating the Document Details screen,

docdetail.dart, and from there, we’ll move on to the main screen and finalize the application.

There are still a lot of things to discover and learn with the amazing Flutter framework.

59

Chapter 3 App UI—Document Details

Quick intro

Throughout this chapter, we’ll look at how to create some of the required UI parts of our

application, which is essentially the Document Details screen. Without further ado, let’s dive

right in.

Document Details

We’ve reached quite a milestone! We’ve pretty much written all the utility and underlying

database code that our application will use. But we are not done yet—we still need to create the

UI logic that our application will use.

We’ll start writing that UI logic by creating the Document Details window, which will contain the

details of each document that our application will store.

So, under the project’s lib folder, create a subfolder called ui, and under it, create a new file

called docdetail.dart. This is how your lib folder structure should look so far.

Figure 3-a: The project’s lib folder structure so far

With the docdetail.dart file created, let’s add some code—we’ll start by importing the references

to the libraries and packages we’ll need.

Code Listing 3-a: Import statements—docdetail.dart

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';

import 'package:flutter_masked_text/flutter_masked_text.dart';

60

import 'package:flutter_datetime_picker/flutter_datetime_picker.dart';

import '../model/model.dart';
import '../util/utils.dart';
import '../util/dbhelper.dart';

Okay—let’s check what references we’ve imported. First, we are importing the dart:async

library, which we’ll need to make asynchronous calls to the database.

Next, we reference the Flutter Material Design (package:flutter/material.dart) and

Services (package:flutter/services.dart) packages. Material Design is used for the app’s

UI layout, and the Services library exposes platform-specific services to Flutter apps, such as

handling text input.

Following that, notice how we are referencing two packages we have not come across before.

The first one is going to be used for a masked text input field, which we will use for entering

dates manually: flutter_masked_text.dart.

The second is going to be used for selecting dates, as you would normally do using an iPhone.

It is inspired by the Flutter Cupertino Date Picker component,

flutter_datetime_picker.dart.

We can see an example of it as follows.

Figure 3-b: The Flutter Cupertino Date Picker

The final three import statements refer to the code files we previously wrote and will need to

use in docdetail.dart, These are: model.dart, utils.dart, and dbhelper.dart.

Something very important we need to do is add a reference to the flutter_masked_text and

flutter_datetime_picker packages to the Pubspec.yaml file, and then install the referenced

packages using the Packages get option, which can be seen as follows.

https://pub.dartlang.org/packages/flutter_masked_text
https://pub.dartlang.org/packages/flutter_datetime_picker
https://github.com/wuzhendev/flutter-cupertino-date-picker

61

Figure 3-c: Adding the packages—Pubspec.yaml

That wraps up the import statements that the docdetail.dart file needs. Next, let’s add a menu

option that allows us to delete a document in case it was incorrectly entered.

Menu options

For every document that exists within the database that can be edited, we should also have the

option to remove it. This is particularly useful if you’ve entered a document that is incorrect. We

can do this as follows.

Code Listing 3-b: Delete document menu option—docdetail.dart

// Import statements… previous code.

// Menu item
const menuDelete = "Delete";
final List<String> menuOptions = const <String> [
 menuDelete
];

// More code will follow…

As you can see, the Delete menu option is simply an element that is part of a menuOptions

array that we’ll add to the Flutter UI shortly.

We could add more menu options to this array, but the only one we really need is the option to

delete an existing document, for which we’ll add the logic later.

62

Stateful widget

We are now ready to create the base widget that will be used within docdetail.dart. This is going

to be a stateful widget, which is a widget that describes part of the user interface by building a

set of other widgets that describe the user interface more concretely.

The stateful widget has a state that can change. The state is information that can be read

synchronously when the widget is built and might change during its lifetime.

Having a stateful widget is useful when part of the user interface that is being rendered can

change dynamically. This is exactly our case, as docdetail.dart will contain document details

that can vary.

Let’s go ahead and define the stateful widget we will use for rendering the UI of docdetail.dart.

Code Listing 3-c: Stateful widget class—docdetail.dart

// Previous code…

class DocDetail extends StatefulWidget {
 Doc doc;
 final DbHelper dbh = DbHelper();

 DocDetail(this.doc);

 @override
 State<StatefulWidget> createState() => DocDetailState();
}

// More code will follow…

As we can see, a stateful widget is simply a Dart class—in this case called DocDetail—that

inherits from the base StatefulWidget Flutter UI class.

This class has a constructor called DocDetail that is initialized with an instance of the Doc

class from model.dart.

A very important part of the DocDetail class is the createState method inherited from the

StatefulWidget class, which needs to be overridden—that’s why the @override attribute is

used. The overriding is done by invoking an instance of the DocDetailState class using the

lambda or arrow (=>) syntax.

Notice that an instance of the DbHelper class is created and assigned to the dbh (database

handler) variable, which will be used by the logic contained within docdetail.dart to read and

write to the database.

As you can see in Code Listing 3-c, there is a pattern—for each StatefulWidget class, there is

a corresponding State class. Let’s go ahead and create that State class as follows.

63

Code Listing 3-d: State class—docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {

 final GlobalKey<FormState> _formKey = new GlobalKey<FormState>();

 final GlobalKey<ScaffoldState> _scaffoldKey =

 new GlobalKey<ScaffoldState>();

 final int daysAhead = 5475; // 15 years in the future.

 final TextEditingController titleCtrl = TextEditingController();

 final TextEditingController expirationCtrl = MaskedTextController(

 mask: '2000-00-00');

 bool fqYearCtrl = true;

 bool fqHalfYearCtrl = true;

 bool fqQuarterCtrl = true;

 bool fqMonthCtrl = true;

 bool fqLessMonthCtrl = true;

 // More code to follow…

}

Here we have our DocDetailState class declared. As you can see, it inherits from

State<DocDetail>, which means that this class handles the state of the DocDetail stateful

widget class we previously declared.

Within the DocDetailState class, we have declared a set of variables that we will need, and

they represent the state of a document being created or edited. Let’s explore these variables

and what they are used for.

The first two variables we have declared, _formKey and _scaffoldKey, are going to be used

for keeping the state of the form once it has been submitted—when the data is saved.

The FormState class in Flutter is associated with keeping the state of a Form widget, which we

will add shortly to the DocDetailState class code.

The ScaffoldState class in Flutter handles the state for a Scaffold object. The Scaffold widget

will contain the Form widget—we’ll see this later.

Next, we have declared a variable called daysAhead, which indicates how far into the future we

can assign an expiration date to a document.

This has been set to a maximum of 5,475 days (approximately 15 years) into the future, which is

usually longer than the expiration date of standard types of documents such as passports, credit

https://docs.flutter.io/flutter/widgets/Form-class.html
https://docs.flutter.io/flutter/material/Scaffold-class.html

64

cards, and driver’s licenses. So, the expiration date of a document cannot be greater than the

value of daysAhead.

Following that, we have two TextEditingController variables: one for the document’s title (or

description), titleCtrl, and another for the document’s expiration date, expirationCtrl.

A TextEditingController represents a handy controller for a text field. So, when the text field

associated with the TextEditingController has been modified, the text field updates its value

property and the controller notifies its listeners. You can find more details on the official Flutter

documentation.

Given that both the document title and expiration date can be manually entered, it is logical to

bind both to TextEditingController objects.

The main difference between them is that the expiration date field, which binds to

expirationCtrl, is instantiated as a MaskedTextController and assigned a default mask, so

when the date is manually entered, it follows the date format YYYY-MM-DD (for example, 2020-

10-12).

Notice that, so far, all the variables declared within the DocDetailState class have been

marked as final, which means that their value can only be set once.

Finally, we have five variables (which are technically objects) that represent the specific alerts of

when we would like the application to remind us that a document is going to expire.

We won’t implement the alert mechanism itself within the scope of this book. However, by

adding these variables (which already have their matching columns in the database), we leave

these building blocks ready. So in the future, you could add your own alert mechanism using

these variables:

• The fqYearCtrl variable, when set to true, would indicate that we would like our app to

remind us of the expiration date of a document when it’s due to expire within a year’s

time.

• The fqHalfYearCtrl variable, when set to true, would indicate that we would like our

app to remind us of the expiration date of a document when it’s due to expire within the

next six months.

• The fqQuarterCtrl variable, when set to true, would indicate that we would like our

app to remind us of the expiration date of a document when it’s due to expire within the

next three months.

• The fqMonthCtrl variable, when set to true, would indicate that we would like our app

to remind us of the expiration date of a document when it’s due to expire within the next

month.

• The fqLessMonthCtrl variable, when set to true, would indicate that we would like our

app to remind us of the expiration date of a document when it’s due to expire less than a

month from now.

https://docs.flutter.io/flutter/widgets/TextEditingController-class.html
https://www.dartlang.org/guides/language/language-tour#final-and-const

65

These are all the variables needed within the DocDetailState class. Let’s move on with the

rest of the code.

Initializing text controllers and variables

When the Document Details screen is shown, it is important that the right data is correctly

displayed to the user—this could be data from an existing document on the database, or

alternatively, blank data. Let’s see an example of each.

Here’s an example of how the Document Details screen looks when loading data from an

existing document.

Figure 3-d: Document Details screen—Existing document

As you can see, all the respective variables we previously described—represented by those UI

widgets—have corresponding values assigned, which represent the value stored in the

database for that document.

Let’s now have a look at how this same screen would look for an empty document.

66

Figure 3-e: Document Details screen—New document

Notice that the Document Name and Expiry Date fields are empty; however, by default, the alert

fields are all enabled, which is what the initialization code is responsible for.

Code Listing 3-e: Initialization code—docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {
 // Previous code

 // Initialization code
 void _initCtrls() {
 titleCtrl.text = widget.doc.title != null ? widget.doc.title : "";
 expirationCtrl.text =
 widget.doc.expiration != null ? widget.doc.expiration : "";

 fqYearCtrl = widget.doc.fqYear != null ?
 Val.IntToBool(widget.doc.fqYear) : false;
 fqHalfYearCtrl = widget.doc.fqHalfYear != null ?
 Val.IntToBool(widget.doc.fqHalfYear) : false;
 fqQuarterCtrl = widget.doc.fqQuarter != null ?
 Val.IntToBool(widget.doc.fqQuarter) : false;
 fqMonthCtrl = widget.doc.fqMonth != null ?
 Val.IntToBool(widget.doc.fqMonth) : false;
 }

 // More code will follow…
}

67

As you can see, all we are doing is assigning a value to each of the variables that are

represented on the screen by using a ternary conditional expression.

This means that if there’s a value assigned to its corresponding doc property, then that value is

assigned to the variable if no default value is assigned.

In essence, if there’s a doc object with values, those values will be used and assigned to their

corresponding variables (field widgets seen on the screen). But where is this doc object coming

from?

That doc object is the model representation of a document record stored in the database, if

there is one. It’s the doc property of the DocDetail class. To understand this better, let’s have a

look at the following diagram.

Figure 3-f: Relationship among the code, screen and database—Document Details

Now that we know how the initialization code relates to the Document Details screen, and how

this relates to a record stored in the database, let’s move on and focus on how to create the

required UI widgets and their underlying logic.

Choosing a date

One of the nicest features about the Document Details screen is the possibility to be able to

either manually enter the document’s expiration date, or choose it from an iOS-styled date

picker component, which looks like the following image.

68

Figure 3-g: iOS-styled date-picker component

Let’s write the code that displays this component and allows us to choose the date without

having to write it manually.

Code Listing 3-f: Date-picker code—docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {
 // Previous code

 // Date Picker & Date function
 Future _chooseDate(BuildContext context, String initialDateString)
 async {
 var now = new DateTime.now();
 var initialDate = DateUtils.convertToDate(initialDateString) ?? now;

 initialDate = (initialDate.year >= now.year &&
 initialDate.isAfter(now) ? initialDate : now);

 DatePicker.showDatePicker(context, showTitleActions: true,
 onConfirm: (date) {
 setState(() {
 DateTime dt = date;

69

 String r = DateUtils.ftDateAsStr(dt);
 expirationCtrl.text = r;
 });
 },
 currentTime: initialDate);
 }

 // More code to follow…
}

Let’s go over what this method does. The first thing we see is the _chooseDate method, which

is marked as async and returns a Future object.

This is because the _chooseDate method is going to be triggered when the “…” button on the

Expiry Date field is tapped—this corresponds to an onPressed event, so the operation needs to

be asynchronous.

Notice the parameters being passed to the _chooseDate method. One is of type

BuildContext, and the other of type initialDateString, which indicates an initialization date

passed as a String object.

The BuildContext class handles the location of the widget in Flutter’s internal widget tree. You

can find additional information about this class here.

In the _chooseDate method, the first thing that happens within the first two lines of code is that

the initialDate is assigned to either the DateTime value of initialDateString, or to the

current DateTime value, when the DateTime value of initialDateString is null.

var now = new DateTime.now();

var initialDate = DateUtils.convertToDate(initialDateString) ?? now;

We need to ensure that the date-picker component doesn’t give us the possibility to choose a

date that is in the past. Therefore, the code checks if the value of initialDate is in the future,

or at least equal to the current date. If so, the value of initialDate is used; otherwise, the

current date value is used, represented by the variable now. This then becomes the final value

of the initialDate variable.

initialDate = (initialDate.year >= now.year &&

 initialDate.isAfter(now) ? initialDate : now);

The final value of initialDate is passed on to the showDatePicker method and assigned to

the currentTime property of the DatePicker instance.

The actual date assignment happens within the onConfirm event of the DatePicker instance.

https://docs.flutter.io/flutter/widgets/BuildContext-class.html

70

The onConfirm event gets triggered when a date is selected from the date-picker component

and the Done button is tapped.

The date parameter passed to the onConfirm event corresponds to the date chosen using the

date-picker component.

All the logic that follows is executed inside the setState method, which notifies the Flutter

framework that the internal state of DocDetailState has changed.

setState(() {

 DateTime dt = date;

 String r = DateUtils.ftDateAsStr(dt);

 expirationCtrl.text = r;

});

That selected date is converted to a DateTime value, formatted accordingly using the

ftDateAsString method from the DateUtils class, and assigned to the Expiry Date field,

which is represented by expirationCtrl.text.

Deleting a document

Remember the menu options array we previously created? We are now going to put it to use.

The reason is that the application needs to give users the ability to be able to delete a

document, in case it was entered incorrectly, or it is no longer valid (expired a long time ago).

This option is accessed by clicking the “…” button on the top, next to the title of the document.

Figure 3-h: The document menu

Here is what the menu option to delete a document looks like.

https://docs.flutter.io/flutter/widgets/State/setState.html

71

Figure 3-i: The delete document menu option

Let’s explore the code-behind, to see what it does.

Code Listing 3-g: Delete document code—docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {
 // Previous code

 // Upper Menu
 void _selectMenu(String value) async {
 switch (value) {
 case menuDelete:
 if (widget.doc.id == -1) {
 return;
 }
 await _deleteDoc(widget.doc.id);
 }
 }

 // Delete doc
 void _deleteDoc(int id) async {
 int r = await widget.dbh.deleteDoc(widget.doc.id);
 Navigator.pop(context, true);
 }

 // More code to follow…
}

If we inspect the code more closely, we can see that we have two methods, each responsible

for an action. The _selectMenu method is invoked when the user selects the menuDelete

option—we’ll look at that specific trigger later.

This method invokes the _deleteDoc method when the active document on the Document

Details screen is not empty, which means that it exists in the database—it has a corresponding

record.

72

When the document is new (empty), the method returns to its caller. This is what the

widget.doc.id == -1 conditional check is for.

The _deleteDoc method is very simple—all it does is invoke the deleteDoc method from the

dbh (database helper) instance through the parent DocDetail stateful widget. This will remove

the corresponding document record from the database.

Then, the control is returned to the main screen by closing the current context (the Document

Details screen) by calling the Navigator.pop method.

You can find additional information about how to navigate between Flutter screens in the official

documentation.

Now that we know how to delete a document, let’s explore how we can save the data entered

through the Document Details screen.

Saving a document

A fundamental part of the Document Details screen is the ability to save data that has been

entered or has changed—this what the following code does.

Code Listing 3-h: Save document code—docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {
 // Previous code

 // Save doc
 void _saveDoc() {
 widget.doc.title = titleCtrl.text;
 widget.doc.expiration = expirationCtrl.text;

 widget.doc.fqYear = Val.BoolToInt(fqYearCtrl);
 widget.doc.fqHalfYear = Val.BoolToInt(fqHalfYearCtrl);
 widget.doc.fqQuarter = Val.BoolToInt(fqQuarterCtrl);
 widget.doc.fqMonth = Val.BoolToInt(fqMonthCtrl);

 if (widget.doc.id > -1) {
 debugPrint("_update->Doc Id: " + widget.doc.id.toString());
 widget.dbh.updateDoc(widget.doc);
 Navigator.pop(context, true);
 }
 else {
 Future<int> idd = widget.dbh.getMaxId();
 idd.then((result) {
 debugPrint("_insert->Doc Id: " + widget.doc.id.toString());

https://flutter.io/docs/cookbook/navigation/navigation-basics

73

 widget.doc.id = (result != null) ? result + 1 : 1;
 widget.dbh.insertDoc(widget.doc);
 Navigator.pop(context, true);
 });
 }
 }

 // More code to follow…
}

The first two lines of code read the values entered through titleCtrl.text and

expirationCtrl.text fields, which correspond to the Document Name and Expiry Date

fields seen on the screen, and assign them to their corresponding properties within the doc

instance. This represents the object model that is stored in the database.

The following four lines of code do the same for the alert properties. The only difference is that

those widgets on the screen have a value of on (true) or off (false), which need to be

converted to their integer equivalent, so they can be saved in the database. This Boolean-to-

integer conversion is done by invoking the BoolToInt method from the Val class (found in

utils.dart).

To better understand this, let’s have a look at the following figure.

74

Figure 3-j: The on and off alerts database values

At this stage, we have assigned all the values to the doc instance that is going to be saved to

the database. Next comes the most interesting part of the _saveDoc method.

To be able to save the data correctly, we need to check if the data being entered corresponds to

a new document or an existing one.

If the condition (widget.doc.id > -1) evaluates to true, then we are modifying an existing

document. Therefore, we invoke the updateDoc method from the dbh (database handler)

instance and pass the document object model (doc) that is going to be updated.

If the condition (widget.doc.id > -1) evaluates to false, then we are saving a new

document to the database. Therefore, we invoke the insertDoc method from the dbh

(database handler) instance and pass the document object model (doc) that is going to be

inserted.

Notice that when inserting a new document, we need to make sure that we assign a doc.id

value that is larger than the largest doc.id value stored in the database table. Therefore, we

invoke the getMaxId method.

75

Finally, to return the navigation control back to the main screen, we invoke Navigator.pop.

Submitting the form

We now know how we can save newly entered data, or data that has been modified from the

Document Details screen—but how does that save action get triggered?

Just like with HTML, Flutter has the concept of a form—and as you might have guessed, forms

in Flutter can also be submitted. Submitting a form is what triggers the save action.

Let’s look at the code to understand better how this works.

Code Listing 3-i: Submitting a form code—docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {
 // Previous code

 // Submit form
 void _submitForm() {
 final FormState form = _formKey.currentState;

 if (!form.validate()) {
 showMessage('Some data is invalid. Please correct.');
 } else {
 _saveDoc();
 }
 }

 void showMessage(String message, [MaterialColor color = Colors.red]) {
 _scaffoldKey.currentState
 .showSnackBar(new SnackBar(backgroundColor: color,
 content: new Text(message)));
 }

 // More code to follow…
}

The _submitForm method is quite simple. First, we get the current state of the form. We do this

by invoking _formKey.currentState and assigning that value to an instance of the FormState

Flutter class.

The great thing about forms in Flutter is that they are almost self-managed and keep their state,

so to know if something has changed, all we need to do is invoke the validate method from

the FormState instance.

76

If the validate method returns true, it means that the field values on the form are valid and

the data is okay to be saved, so the _saveDoc method can be invoked.

If the validate method returns false, it means that one or more field values on the form are

invalid and the data cannot be saved, so an alert message is displayed to the user. This is what

the showMessage method does.

The showMessage method displays a message—this is achieved by using a SnackBar widget,

which we can see as follows.

Figure 3-k: The SnackBar displayed—Invalid form data

Now that we know how the save action gets triggered, let’s wrap this up and build the UI, which

is what we’ll do next.

Building the UI

We’ve reached the last part of docdetail.dart, which is both a major milestone for us and exciting

at the same time.

Throughout this last part, our focus is going to be on how to build the UI and tie together all the

previous docdetail.dart code parts we’ve written.

Let’s start off by overriding a fundamental method of the inherited State class, which is the

initState method.

Code Listing 3-j: The initState method—docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {
 // Previous code

 @override
 void initState() {

77

 super.initState();
 _initCtrls();
 }

 // More code to follow…
}

The initState method is responsible for initializing the state of its class—in this case, the

DocDetailState class. This is where we can do all initializations needed before building the UI.

This method is described with the @override attribute, as it overrides the behavior of the

initState method inherited from the State<DocDetail> class.

Within the method, the inherited initState method from the State<DocDetail> class is

called. This is done by invoking it as super.initState.

Following that, the _initCtrls method is called, which, as you might remember, is responsible

for initializing the values of the text controllers and alert reminder widgets.

It’s important to note that the initState method gets triggered by the Flutter framework when

the object is inserted into the widget tree. You can find more details about the initState

method within the official Flutter documentation.

With the initState method described, we are now ready to build the UI—this is done with the

build method. The complete code of the build method for the DocDetailState class looks as

follows.

Code Listing 3-k: The build method—Docdetail.dart

// Previous code…

class DocDetailState extends State<DocDetail> {
 // Previous code

 @override
 Widget build(BuildContext context) {
 const String cStrDays = "Enter a number of days";
 TextStyle tStyle = Theme.of(context).textTheme.title;
 String ttl = widget.doc.title;

 return Scaffold(
 key: _scaffoldKey,
 resizeToAvoidBottomPadding: false,
 appBar: AppBar(
 title: Text(ttl != "" ? widget.doc.title : "New Document"),
 actions: (ttl == "") ? <Widget>[]: <Widget>[
 PopupMenuButton(

https://docs.flutter.io/flutter/widgets/State/initState.html

78

 onSelected: _selectMenu,
 itemBuilder: (BuildContext context) {
 return menuOptions.map((String choice) {
 return PopupMenuItem<String>(
 value: choice,
 child: Text(choice),
);
 }).toList();
 },
),
]
),
 body: Form(
 key: _formKey,
 autovalidate: true,
 child: SafeArea(
 top: false,
 bottom: false,
 child: ListView(
 padding: const EdgeInsets.symmetric(horizontal: 16.0),
 children: <Widget>[
 TextFormField (
 inputFormatters: [
 WhitelistingTextInputFormatter(
 RegExp("[a-zA-Z0-9]"))
],
 controller: titleCtrl,
 style: tStyle,
 validator: (val) => Val.ValidateTitle(val),
 decoration: InputDecoration(
 icon: const Icon(Icons.title),
 hintText: 'Enter the document name',
 labelText: 'Document Name',
),
),
 Row(children: <Widget>[
 Expanded(
 child: TextFormField(
 controller: expirationCtrl,
 maxLength: 10,
 decoration: InputDecoration(
 icon: const Icon(Icons.calendar_today),
 hintText: 'Expiry date (i.e. ' +
 DateUtils.daysAheadAsStr(daysAhead) + ')',
 labelText: 'Expiry Date'
),
 keyboardType: TextInputType.number,
 validator: (val) => DateUtils.isValidDate(val)
 ? null : 'Not a valid future date',

79

)),
 IconButton(
 icon: new Icon(Icons.more_horiz),
 tooltip: 'Choose date',
 onPressed: (() {
 _chooseDate(context, expirationCtrl.text);
 }),
)
]),
 Row(children: <Widget>[
 Expanded(child: Text(' ')),
]),
 Row(children: <Widget>[
 Expanded(child: Text('a: Alert @ 1.5 & 1 year(s)')),
 Switch(
 value: fqYearCtrl, onChanged: (bool value) {
 setState(() {
 fqYearCtrl = value;
 });
 }),
]),
 Row(children: <Widget>[
 Expanded(child: Text('b: Alert @ 6 months')),
 Switch(
 value: fqHalfYearCtrl, onChanged: (bool value) {
 setState(() {
 fqHalfYearCtrl = value;
 });
 }),
]),
 Row(children: <Widget>[
 Expanded(child: Text('c: Alert @ 3 months')),
 Switch(
 value: fqQuarterCtrl, onChanged: (bool value) {
 setState(() {
 fqQuarterCtrl = value;
 });
 }),
]),
 Row(children: <Widget>[
 Expanded(child: Text('d: Alert @ 1 month or less')),
 Switch(
 value: fqMonthCtrl, onChanged: (bool value) {
 setState(() {
 fqMonthCtrl = value;
 });
 }),
]),
 Container(

80

 padding: const EdgeInsets.only(
 left: 40.0, top: 20.0),
 child: RaisedButton(
 child: Text("Save"),
 onPressed: _submitForm,
)
),
],
),
)));
 }
}

The build method is what builds the UI—in this case, the UI of the Document Details window.

That’s quite a bit of code, so to understand how the UI has been built using this method, it’s best

to break the code into smaller chunks to describe how each individual part is composed. Let’s

start from the top.

The first thing to notice is that the build method has the @override attribute, which means that

its logic will override any logic from the build method inherited from State<DocDetail>.

Next, notice how the build method returns a type of Widget, which describes the configuration

for an Element. You can find more details about the Widget class in the official documentation.

Because the build method is going to return a Widget, it’s necessary to handle the location of

the widget returned within the widget tree. Therefore, the BuildContext class is passed as a

parameter.

Next, let’s explore the following three lines, which correspond to internal initializations.

const String cStrDays = "Enter a number of days";

TextStyle tStyle = Theme.of(context).textTheme.title;

String ttl = widget.doc.title;

The first instruction declares and initializes a String object constant that is totally self-

descriptive.

The second instruction basically initializes the TextStyle instance that will be used for this UI.

You can find more details about text styling in Flutter in the official documentation.

The third instruction, also self-descriptive, simply initializes the ttl variable with the value of the

document title, accessible through widget.doc.title.

https://docs.flutter.io/flutter/widgets/Element-class.html
https://docs.flutter.io/flutter/widgets/Widget-class.html
https://docs.flutter.io/flutter/painting/TextStyle-class.html

81

Scaffold

With all the initializations ready, now comes the interesting part: the build method returns a

Scaffold object, which implements a basic Material Design visual layout structure.

You can think of the Scaffold object as a layout container that will contain the widgets

displayed on the screen. The Scaffold object has two essential properties: appBar and body.

The Scaffold object also has two other properties that are quite important: key and

resizeToAvoidBottomPadding.

The key property is assigned to the _scaffoldKey property, which is used for tracking the state

of the Scaffold.

The resizeToAvoidBottomPadding property is used to indicate whether the body or floating

widgets should size themselves to avoid the window’s bottom padding.

AppBar

The appBar represents the uppermost area of the layout that includes the title and any menu

options. The body represents the rest of the useable screen area, which contains all the other

fields, such as the Document Name, Expiry Date, and the various alert reminders.

The appBar section of the code is quite easy to understand without looking at a diagram, but the

body section is more elaborate. To understand how the different parts of the screen are

composed, it’s easier to associate the code with a diagram—which we’ll look at shortly.

The appBar section is made of an AppBar Material Design-based Flutter object, which has

title and actions properties.

The actions property, which is a Widget array, represents possible menu options that the

widget can have—in our case, the Delete option.

In our case, we are doing something unconventional with the actions property—we are using a

ternary conditional expression (?) and assigning an empty Widget array (Widget[]) if the

title variable (ttl) contains an empty String value.

An empty ttl indicates that we are working on a new document and are not editing an existing

document. For a new document, there is no need to have a Delete option, as obviously there’s

nothing to delete—the document hasn’t been created yet.

For an existing document that is already present in the database, it is then logical to have the

Delete menu option available, as we can then opt to remove the document from the database if

we don’t need the document any longer, if its data is incorrect, or if it has expired.

https://docs.flutter.io/flutter/material/Scaffold-class.html
https://material.io/design/
https://docs.flutter.io/flutter/material/Scaffold/resizeToAvoidBottomPadding.html
https://docs.flutter.io/flutter/material/AppBar-class.html

82

So, when ttl is not empty (the document exists in the database), we assign to the appBar

property a Widget array (Widget[]), which contains a PopupMenuButton object that is

responsible for building the Delete menu-option widget.

The PopupMenuButton has two properties that are being used: the onSelected property, which

is assigned to the _selectMenu method that we previously wrote, and itemBuilder, which is

responsible for building the menu options and adding them to the appBar.

Figure 3-l: The appBar actions property

From the preceding diagram, we can see that the actual menu is built by converting the result of

executing the menuOptions.map method to a list using the toList method.

We can also see how each section of the actions property relates to what is seen on the

screen when a new document is added, or an existing document is being edited.

So, itemBuilder is assigned to an anonymous function, which receives a BuildContext

parameter and returns a mapped list of items contained within the menuOptions array we

previously declared. Each individual menu option is an instance of PopupMenuItem.

Body

Let’s now focus on the most extensive part of the Scaffold object, which is the body property.

Given that the body code is quite long, we’ll have to break it down into chunks. To understand

this better, let’s start off by looking at the following diagram.

https://docs.flutter.io/flutter/material/PopupMenuButton-class.html
https://docs.flutter.io/flutter/material/PopupMenuItem-class.html

83

Figure 3-m: The main body section parts

We can see that the body is nothing more than a Flutter Form, which includes a SafeArea

object as a child, which includes a ListView.

The reason for this nested layout is that we want to be able to have a list of widgets arranged

one below the other. This is why we are using a ListView and have enough padding to avoid

any visual intrusions from the device’s operating system—which is why we are using a

SafeArea as the child of the Form.

Notice that the key property of the Form object is assigned to the _formKey method that we

previously wrote. The autovalidate property is set to true, which means that validation takes

place when the form is submitted.

With this well-organized, top-level layout, we have a good foundation on which to render and

organize the rest of the widgets that are seen on the screen.

Document Name and Expiry Date

Given that the ListView object will contain all the widgets seen on the screen, let’s now explore

how the ListView code is organized in more detail, by looking at the following diagram—this

explains how the first two fields are composed.

https://docs.flutter.io/flutter/widgets/Form-class.html
https://docs.flutter.io/flutter/widgets/SafeArea-class.html
https://docs.flutter.io/flutter/widgets/ListView-class.html

84

Figure 3-n: The first two data-entry widgets—Document Details screen

We can see that the first widget within the ListView is the text input for the Document Name

field.

Document Name field

This field is of type TextFormField, and it is basically a FormField that contains a TextField

object.

The TextFormField contains an inputFormatters array that includes a regular expression

that specifies which characters can be typed within the field—these are assigned to the

WhiteListingTextInputFormatter property.

The controller property is used for indicating that this TextFormField binds to the

titleCtrl variable (which is a TextEditingController).

The validator property is used for running field validations; here the Val.ValidateTitle

method is executed when the value of the field has changed.

The decoration property, as its name implies, basically sets the icon, hint (hintText), and

label text (labelText) messages that are seen on the screen.

That wraps up the Document Name field—let’s now talk about the field that follows, the Expiry

Date.

Expiry Date field

The Expiry Date field is slightly more complex, as it renders as a TextFormField contained

within an Expanded object, which is part of a Row object.

https://docs.flutter.io/flutter/material/TextFormField-class.html
https://docs.flutter.io/flutter/widgets/FormField-class.html
https://docs.flutter.io/flutter/material/TextField-class.html

85

The reason for this composition is that the Row object also contains an IconButton object,

which is used for displaying the Cupertino (iOS-styled) Date Picker widget that was previously

explained.

To get a better understanding of how the Expiry Date field is composed, let’s look at the

following diagram.

Figure 3-o: The Expiry Date field—Document Details screen

You can clearly see that the Expanded widget corresponds to the area where the text can be

manually entered.

The decoration and validator properties of TextFormField work the same way as the

Document Name field.

Notice though, how TextFormField binds to the expirationCtrl variable, and the maximum

number of characters that can be entered is set to 10—the maxLength property.

For the Expiry Date, the DateUtils.isValidDate method gets triggered when the field value

changes and checks if the expiration date is a future date or not.

As for the IconButton object, you can clearly see in the diagram that its icon property renders

the “…” button, and the onPressed event triggers the execution of the _chooseDate method,

which we previously explored, and runs the iOS-styled Date Picker widget.

With the main two fields explored, let’s move on to the alert fields of the form.

Alert fields

The way the alert fields are composed is almost the same for each one of them—the only

difference is the text displayed on the screen and the variables to which they bind.

86

Let’s explore each one. Each alert field is composed within a Row object.

I have intentionally left an empty Row object before the first alert field—this is to give enough

space on the screen between the Expiry Date field and the first alert field. We can see this as

follows.

Figure 3-p: The empty row and first alert field—Document Details screen

Let’s explore the details of how a Row object is composed. We can see that the empty Row

object contains a children property, assigned to an Expanded object. The Expanded object

has a child property that is assigned to a Text object containing an empty String value.

As for the non-empty Row object, we can clearly see that the Expanded object contains a Text

child object with the caption that is displayed on the screen.

The Switch widget is used to toggle the on/off state of a single setting. The Switch widget is

bound to the fqYearCtrl variable, which indicates that an alert would get triggered when

there’s one year remaining for the document to expire.

The Switch widget includes an onChanged event that gets triggered when its value changes

(goes from on to off, or vice versa). When its value changes, the setState function is executed

and notifies Flutter that the internal state of the object has changed; the changed value is

assigned to fqYearCtrl.

As for the other alerts seen on the screen (6 months, 3 months, and 1 month or less), the

code is the same as this one. The only difference is that each binds to a different variable—to

fqHalfYearCtrl, fqQuarterCtrl, and fqMonthCtrl, respectively.

https://docs.flutter.io/flutter/material/Switch-class.html
https://docs.flutter.io/flutter/widgets/State/setState.html

87

Figure 3-q: Last alert field—Document Details screen

That wraps up the alert fields—let’s now finalize the form by exploring the Save button.

Save button

The Save button is the last part of the form that makes the Document Details screen. Let’s

explore how it is composed—to wrap up the Docdetail.dart code.

Figure 3-r: Save button—Document Details screen

As we can see, the Save button itself is wrapped around a Container widget. It helps combine

common painting, positioning, and decoration of child widgets with padding.

The button is assigned to the child property of the Container widget, and it is a RaisedButton

widget. The _submitForm event gets executed when the onPressed event occurs.

https://docs.flutter.io/flutter/widgets/Container-class.html
https://docs.flutter.io/flutter/material/RaisedButton-class.html

88

Summary

This has been a long and challenging chapter, so if you’ve read this far—congrats! It’s quite

interesting what we’ve been able to achieve so far with Flutter, with a relatively little amount of

code.

When I say it’s not that much code, we necessarily must praise the awesome framework that

the engineers at Google have created, which is Flutter.

As we’ve been able to see, the syntax feels familiar for any developer coming from a C or Java

family-based language, and the constructs are easy to grasp and follow.

Something I really enjoy about Flutter is that the UI can be written within Dart without the need

to use a markup language.

Normally, this is contrary to what most frameworks do, but with Flutter, it feels natural and

enjoyable to create the UI using Dart code—which to me, was a very pleasant surprise.

We’re almost at the end of our application, but we’ve got one final hurdle to overcome: creating

the main screen and the logic behind it, which we will do in the next chapter.

89

Chapter 4 App UI—Main Screen

Quick intro

We’re just one step away from finishing our Flutter application, which I’m excited about and

looking forward to accomplishing. In this final step, we need to create the main screen of our

application. This screen will display the list of documents and allow the user to add new ones.

This is how the finished screen will look.

Figure 4-a: The main application screen

The code for the app’s main screen will reside within the doclist.dart file, which you can create

under the lib\ui subfolder of your app’s main project folder.

90

Getting started: main menu option

Just like we have a menu option on the Document Details screen—which allows us to delete an

existing document—we need to have the option to remove all documents from the list and

delete them from the database. This is known as Reset Local Data.

To add this option, we need to define a menuOptions array, just like we did with the details

screen.

Before doing that, let’s go ahead and reference all the modules and packages we’ll need.

Code Listing 4-a: Creating the main menu—Doclist.dart

import 'dart:async';
import 'package:flutter/material.dart';

import '../model/model.dart';
import '../util/dbhelper.dart';
import '../util/utils.dart';
import './docdetail.dart';

// Menu item
const menuReset = "Reset Local Data";
List<String> menuOptions = const <String> [
 menuReset
];

In the first two lines of code, we import the Dart async package and the Material Design

package that comes with the Flutter framework, which contains the UI widgets our application

will use.

Next, we import the other project modules we created previously—this is because we’ll need to

reference various classes declared within those modules.

Finally, we create menuOptions as a generic List collection (created from an array), which

includes only the menuReset option.

Main stateful widget

Just like we did within Docdetail.dart, we are ready to create the base widget that will be used

within the app’s main screen. This is going to be a stateful widget, which will describe the main

screen’s user interface.

As mentioned previously, a stateful widget has a state that can change, which is useful when

parts of the user interface that are being rendered can change dynamically, given that the items

on the list within the main screen can vary.

91

Let’s define the stateful widget that we will use for rendering the UI of the main screen.

Code Listing 4-b: Stateful widget—main screen

// Previous code…

class DocList extends StatefulWidget {
 @override
 State<StatefulWidget> createState() => DocListState();
}

As we can see, it’s very simple—all we do is override the createState method, which will

create an instance of the DocListState class.

The DocListState class is where we are going to have the logic that creates and manipulates

the main screen’s UI. Let’s explore that now.

Code Listing 4-c: Stateful widget—main screen

// Previous code…

class DocListState extends State<DocList> {
 DbHelper dbh = DbHelper();
 List<Doc> docs;
 int count = 0;
 DateTime cDate;

 // More code to follow...
}

The DocListState class will not only be responsible for creating the main screen’s UI, but also

for handling its state.

To be able to do that, it’s important to keep track of a few things, such as the list of documents,

represented by docs; the number of documents, represented by count; a reference to the

database, represented by dbh; and the current datetime, represented by cDate.

Now that we know which variables are going to keep track of the main screen’s state, let’s now

initialize it. We can do this as follows.

Code Listing 4-d: State initialization—main screen

// Previous code…

class DocListState extends State<DocList> {
 // Previous code

 @override

92

 void initState() {
 super.initState();
 }
}

All we are doing is overriding the implementation of the initState method, and within it,

invoking the initState method from the inherited State<DocList> class.

Awesome—we now have the foundation of our DocListState class laid out. Let’s move on to a

more interesting aspect, which is retrieving the data needed to populate the list of documents.

Getting a list of documents

Possibly the most important aspect of the application—at least from a usage point of view—is

retrieving the data needed to display the list of documents to expire or that have expired.

Let’s explore the full code of the method that makes this happen.

Code Listing 4-e: Retrieving the data—main screen

// Previous code…

class DocListState extends State<DocList> {
 // Previous code

 Future getData() async {
 final dbFuture = dbh.initializeDb();
 dbFuture.then(
 // result here is the actual reference to the database object.
 (result) {
 final docsFuture = dbh.getDocs();
 docsFuture.then(
 // result here is the list of docs in the database.
 (result) {
 if (result.length >= 0) {
 List<Doc> docList = List<Doc>();
 var count = result.length;
 for (int i = 0; i <= count - 1; i++) {
 docList.add(Doc.fromOject(result[i]));
 }
 setState(() {
 if (this.docs.length > 0) {
 this.docs.clear();
 }

 this.docs = docList;

93

 this.count = count;
 });
 }
 });
 });
 }
}

What is going on here? The first important aspect to consider is that the getData method is

async (runs asynchronously), and it returns a Future object, which is the preferred way of

handling data requests. This is done to avoid blocking the application when performing a

computation that might be delayed.

For those familiar with JavaScript web development, think of a Future as a construct very

similar to a Promise.

The first instruction within getData is to call the initializeDb method from the database

helper class. This ensures that the connection with the database is established.

final dbFuture = dbh.initializeDb();

When the connection to the database is established, the then method of the Future object

returned is executed.

dbFuture.then(…)

The result of that database connection is passed as a parameter—(result)— to an

anonymous function that is executed within the scope of the then method of the Future object

returned—dbFuture.

(result) {…}

Within this anonymous method scope, the next thing we do is retrieve the list of documents from

the database—this is done by invoking the getDocs method, which also returns a Future

object.

final docsFuture = dbh.getDocs();

When the retrieval of the list of documents has been finalized, the then method of the Future

object returned is executed.

docsFuture.then(…)

The result of that action—(result)—is the list of documents, which is passed as a parameter

to an anonymous function that is executed within the scope of the then method of the Future

object returned—docsFuture.

https://docs.flutter.io/flutter/dart-async/Future-class.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

94

(result) {…}

Within that anonymous function scope, we first check the length of the result returned, which

indicates the number of documents in the database.

if (result.length >= 0) {…}

We then create a list of documents using the Doc class, which we will use to populate with the

document data retrieved from the database.

List<Doc> docList = List<Doc>();

We also initialize the count variable to the value of result.length, which indicates how many

documents were retrieved from the database.

var count = result.length;

Then, we loop through the result object obtained from the database—where each iteration

represents a database row—and then convert each row into a Doc object, which we add to

docList.

for (int i = 0; i <= count - 1; i++) {

 docList.add(Doc.fromOject(result[i]));

}

With the database rows converted to a List<Doc> object, we need to change the state of our

DocListState class so that the UI can be rendered. We do this by calling the setState

method.

setState(() {…})

Within setState, the first thing we do is empty the contents of this.docs, which is one of the

variables we declared at the beginning of the DocListState class.

if (this.docs.length > 0) {

 this.docs.clear();

}

Then, to this.count—which was also declared at the beginning of the DocListState class—

we assign the value of count, obtained from result.length.

this.docs = docList;

this.count = count;

95

As you can see, the logic behind getData is quite simple and easy to follow once you

understand the concept of Future objects in Dart, and how results are returned.

Checking dates

Another intrinsic aspect of our application is checking dates, which is important because the

goal of the app is to help us keep track of important documents before they expire.

Let’s have a look at the following function, which periodically checks for date and time

discrepancies, and if there are any (for example, the phone’s date-time is different the current

date-time), executes the getDate method.

This way, we can have the latest document data and expiration dates. Here is the function’s

code.

Code Listing 4-f: Check date—main screen

// Previous code…

class DocListState extends State<DocList> {
 // Previous code

 void _checkDate() {
 const secs = const Duration(seconds:10);

 new Timer.periodic(secs, (Timer t) {
 DateTime nw = DateTime.now();

 if (cDate.day != nw.day || cDate.month != nw.month ||
 cDate.year != nw.year) {
 getData();
 cDate = DateTime.now();
 }
 });
 }

 // More code will follow…
}

As we can see, the code is quite straightforward. It creates a Timer object that executes every

10 seconds. The timer’s execution is performed by invoking the periodic method. Within this

method, the cDate object represents the date-time from the moment the main screen widget

was created (first rendered), and the current date-time is represented by the nw object.

If there’s a difference between the day, month, or year of both DateTime objects, then the

getData method is invoked.

96

Normally there shouldn’t be a difference between the day, month, or year of when the main

screen widget was rendered (cDate) and the date-time of the nw object. This is because shortly

after the screen is rendered, the current date-time should be calculated, and its value assigned

to nw.

However, there might be cases where the app runs for the first time on a phone that has the

wrong date-time settings, and this would result in a wrong computation of the expiry dates for

each document. So, the execution of the _checkDate function—after the phone date-time

settings have been adjusted—would force a correct computation of the expiry date for each

document.

Navigating to the document details

Given that the app’s main screen contains a list of the documents that are in the database, if we

would like to edit or delete a specific document, we would need to navigate to it. To do this, we

need to define a navigateToDetail method. Let’s see how it looks.

Code Listing 4-g: Navigating to a document—main screen

// Previous code…

class DocListState extends State<DocList> {
 // Previous code

 void navigateToDetail(Doc doc) async {
 bool r = await Navigator.push(context,
 MaterialPageRoute(builder: (context) => DocDetail(doc))
);

 if (r == true) {
 getData();
 }
 }

 // More code will follow…
}

The navigation works by displaying the details of the document tapped from the document list.

This is achieved by using the Navigator.push method and passing a DocDetail instance of the

document selected.

If the result (r) of the push method is true—which means that the document has been

modified—then the getData method is called to retrieve the latest document information from

the database.

https://docs.flutter.io/flutter/widgets/Navigator/push.html

97

Resetting the local data

Given that we want to have the option to delete all the data stored by the app, we need to add

some code that will remove any data stored locally.

Before any removal operations take place, we need to be able ask the user for confirmation,

and if it is confirmed, then we can remove the data stored in the database. Let’s have a look at

the code.

Code Listing 4-h: Resetting the local data—main screen

class DocListState extends State<DocList> {

 // Previous code

 void _showResetDialog() {

 showDialog(

 context: context,

 builder: (BuildContext context) {

 return AlertDialog(

 title: new Text("Reset"),

 content: new Text("Do you want to delete all local data?"),

 actions: <Widget>[

 FlatButton(

 child: new Text("Cancel"),

 onPressed: () {

 Navigator.of(context).pop();

 },

),

 FlatButton(

 child: new Text("OK"),

98

 onPressed: () {

 Future f = _resetLocalData();

 f.then(

 (result) {

 Navigator.of(context).pop();

 }

);

 },

),

],

);

 },

);

 }

 // More code will follow…

}

Let’s have a look at what we are doing here. The _showResetDialog simply invokes the Flutter

showDialog method.

The builder property of the showDialog method is assigned to an anonymous method, which

receives a BuildContext parameter and returns an AlertDialog instance.

The AlertDialog object contains title, content, and actions properties. The title and

content properties are self-explanatory, but the really interesting part is what happens within

the actions property.

https://docs.flutter.io/flutter/material/AlertDialog-class.html

99

The actions property is assigned to an array of type Widget, which contains two FlatButton

objects. The first button represents the Cancel option, and the second one (OK) represents the

reset data option.

Both buttons have a child property that contains the Text object displayed on each. They also

contain an onPressed event that triggers specific functionality.

In the case of the Cancel button, the onPressed event executes code that returns the focus to

the app’s main screen. This is done by invoking the pop method.

As for the OK button, the onPressed event makes a call to the _resetLocalData method—

which is responsible for removing the data from the database—and then returns the control to

the app’s main screen, which is also done by invoking the pop method.

Let’s have a look at the logic behind the _resetLocalData method.

Code Listing 4-i: Resetting the local data (2)—main screen

// Previous code…

class DocListState extends State<DocList> {
 // Previous code

 Future _resetLocalData() async {
 final dbFuture = dbh.initializeDb();
 dbFuture.then(
 (result) {
 final dDocs = dbh.deleteRows(DbHelper.tblDocs);
 dDocs.then(
 (result) {
 setState(() {
 this.docs.clear();
 this.count = 0;
 });
 }
);
 }
);
 }

 // More code will follow…
}

A call is made to the initializeDb method, which establishes the connection to the database.

When the connection is established, and within the anonymous function invoked within the then

method of dbFuture, the deleteRows method is called, which is responsible for deleting the

rows on the database.

https://docs.flutter.io/flutter/widgets/Widget-class.html
https://docs.flutter.io/flutter/material/FlatButton-class.html

100

The setState function is called to reset the list of documents—this.docs—and set the

number of documents to zero—this.count.

Selecting the menu option

Now that we’ve seen how we can reset the information stored in the database, let’s check how
we can trigger this functionality manually by selecting the menu option associated with it. Here’s
the code.

Code Listing 4-j: Selecting the menu option—main screen

// Previous code…

class DocListState extends State<DocList> {
 // Previous code

 void _selectMenu(String value) async {
 switch (value) {
 case menuReset:
 _showResetDialog();
 }
 }

 // More code will follow…
}

We have a _selectMenu method that includes a switch statement with a condition when the

menuReset option has been selected. When that happens, the _showResetDialog method is

invoked—super simple.

I decided to use a switch statement because if later there’s a need to add additional menu

options, all that would be required would be to add additional case expressions to it.

Building the list of documents

We are now reaching one of the most interesting, useful, and important parts of our application:
building the list of documents that are presented on the app’s main screen. Let’s look at the
complete code for this and dissect it, piece by piece.

Code Listing 4-k: Creating the list of documents—main screen

// Previous code…

class DocListState extends State<DocList> {
 // Previous code

101

 ListView docListItems() {
 return ListView.builder(
 itemCount: count,
 itemBuilder: (BuildContext context, int position) {
 String dd = Val.GetExpiryStr(this.docs[position].expiration);
 String dl = (dd != "1") ? " days left" : " day left";
 return Card(
 color: Colors.white,
 elevation: 1.0,
 child: ListTile(
 leading: CircleAvatar(
 backgroundColor:
 (Val.GetExpiryStr(this.docs[position].expiration) != "0") ?
 Colors.blue : Colors.red,
 child: Text(
 this.docs[position].id.toString(),
),
),
 title: Text(this.docs[position].title),
 subtitle: Text(
 Val.GetExpiryStr(this.docs[position].expiration) + dl +
 "\nExp: " + DateUtils.convertToDateFull(
 this.docs[position].expiration)),
 onTap: () {
 navigateToDetail(this.docs[position]);
 },
),
);
 },
);
 }

 // More code will follow…
}

To understand this better, let’s go over each part of the code. The first thing that is being done

within the docListItems method is a returning of a ListView object that will contain the list of

documents that the app is going to display.

To create that list, we need to call the ListView.builder method, which has two important

properties: itemCount and itemBuilder.

The itemCount property indicates how many documents are going to be added to the list—

notice how we are assigning the value of the count variable that was retrieved from the

database.

The itemBuilder property is the one used to build the document list; this is achieved with an

anonymous function that receives a BuildContext object as one of its parameters.

https://docs.flutter.io/flutter/widgets/ListView-class.html
https://docs.flutter.io/flutter/widgets/BuildContext-class.html

102

Let’s explore the content of the anonymous function assigned to the itemBuilder property—

this is where things get interesting.

On the first two lines of the anonymous function, all we are doing is getting the expiry date of

each document as a String—this is done by invoking the GetExpiryStr function—and then

determining the remaining days left (that will be displayed on the screen).

String dd = Val.GetExpiryStr(this.docs[position].expiration);

String dl = (dd != "1") ? " days left" : " day left";

Notice that the parameter position indicates the current document being added to the list.

With the remaining days determined, the next thing we do is return a Card object, which will

contain the document details. Each document is displayed within its own Card object.

To understand better the composition of the Card object, let’s look at the following diagram.

Figure 4-b: Card objects within the document list

The first two properties of the Card object are self-descriptive. The first indicates the color

used for the background of the Card, in this case white.

The second indicates whether the Card object has a slight visual elevation with respect to the

document list, which is seen as a thin, gray line below each Card object.

The third property of the Card object is its child property, to which we assign a ListTile object.

So basically, the actual content of the Card object is determined by a ListTile object.

https://docs.flutter.io/flutter/material/Card-class.html
https://docs.flutter.io/flutter/material/ListTile-class.html

103

The ListTile object contains a CircleAvatar object that is red when the document has expired,

and blue when the document has not expired. The backgroundColor of the CircleAvatar

object is determined by the following ternary conditional expression.

(Val.GetExpiryStr(this.docs[position].expiration) != "0") ?

Colors.blue : Colors.red

The Text (number) contained within the CircleAvatar object indicates the position (order) of

the document within the database.

Next, within the ListTile property we have the title property, which indicates the name of

the document.

Following that, there’s the subtitle property, which displays the remaining days a document

before it expires.

Text(Val.GetExpiryStr(this.docs[position].expiration) + dl +

"\nExp: " + DateUtils.convertToDateFull(

this.docs[position].expiration))

Finally, the ListTile object has an event that gets triggered when a user taps on the

document, the onTap event, which basically invokes the navigateToDetail method. This

method opens the details of the document selected, which can then be edited.

onTap: () {

 navigateToDetail(this.docs[position]);

}

Finalizing the main screen

The biggest chunk of our main screen, the document list, is finished. However, we still need to

wrap that document list around the main Scaffold object that will hold it, and then Stack it

properly so that it displays correctly during runtime (both in portrait and landscape modes).

We’ll also need to add an AppBar object and link our menu option to it. Let’s go ahead and do

all this.

Code Listing 4-l: Finishing the main screen

// Previous code…

https://docs.flutter.io/flutter/material/CircleAvatar-class.html

104

class DocListState extends State<DocList> {
 // Previous code

 @override
 Widget build(BuildContext context) {
 this.cDate = DateTime.now();

 if (this.docs == null) {
 this.docs = List<Doc>();
 getData();
 }

 _checkDate();

 return Scaffold(
 resizeToAvoidBottomPadding: false,
 appBar: AppBar(
 title: Text("DocExpire"),
 actions: <Widget>[
 PopupMenuButton(
 onSelected: _selectMenu,
 itemBuilder: (BuildContext context) {
 return menuOptions.map((String choice) {
 return PopupMenuItem<String>(
 value: choice,
 child: Text(choice),
);
 }).toList();
 },
),
]
),
 body: Center(
 child: Scaffold(
 body: Stack(
 children: <Widget>[
 docListItems(),
]),
 floatingActionButton: FloatingActionButton(
 onPressed: () {
 navigateToDetail(Doc.withId(-1, "", "", 1, 1, 1, 1));
 },
 tooltip: "Add new doc",
 child: Icon(Icons.add),
),
),
),
);
 }

105

}

Just like we did with the Document Details screen, to render its content we need to override

the build method inherited from the DocListState class. Let’s explore each part of the build

method so we can understand exactly what it does.

The first thing that happens within the build method is that we get the current date-time, which

will represent the date-time when the main screen is rendered. This value is stored within the

cDate variable we previously explained.

Next, if the document list doesn’t exist yet—which means that no documents have ever been

retrieved—then the list of documents is initialized, and a call to the getData method is made to

check whether there are any documents within the database.

if (this.docs == null) {

 this.docs = List<Doc>();

 getData();

}

Following that, we invoke the _checkDate method. This is to check that the current date-time is

aligned with the date-time the screen was rendered, checking that the amount of days left for

each document is accurate.

Then, the build method returns a Scaffold object, which will render the main screen. The

Scaffold object has two main properties that take most of the logic of the build method code:

the appBar and the body.

The appBar property is assigned to an AppBar object, which basically constitutes the

application’s top navigation bar, including the app’s name and the menu option. To understand it

better, let’s look at the following diagram.

Figure 4-c: The main screen’s AppBar

https://docs.flutter.io/flutter/material/Scaffold-class.html
https://docs.flutter.io/flutter/material/AppBar-class.html

106

As we can see, the actions property of the AppBar object is nothing more than an array of type

Widget, which includes a PopupMenuButton object.

The PopupMenuButton object contains an onSelected property that is assigned to the

_selectMenu method, which opens the Reset Local Data option.

The menu itself is built by an anonymous function that is assigned to the itemBuilder property

and returns a menuOptions array object as a list, with each menu item being a PopMenuItem

object (in our case, there’s only one menu option).

By doing it this way, we could expand the application later and add extra menu options to the

menuOptions array without having to modify any of the rendering functionality.

To better understand its composition of the body property, let’s have a look at the following

diagram.

Figure 4-d: The main screen’s body

We can see that the Scaffold object contains the document list and a floating button. The

Scaffold object is wrapped within a Center object, so that all the content is properly centered in

any rotation that the device is used.

The document list generated by the docListItems method is wrapped around a Stack widget,

which is done to ensure that the list of documents is positioned correctly relative to the edges of

its surrounding box.

The floating button used to create a new document is created by the FloatingActionButton

object—assigned to the floatingActionButton property—and it contains an Icon object, a

tooltip property, and an onPressed event. This event calls the navigateToDetail method

that displays an empty Document Details screen when creating a new document.

https://docs.flutter.io/flutter/material/PopupMenuButton-class.html
https://docs.flutter.io/flutter/widgets/Center-class.html
https://docs.flutter.io/flutter/material/FloatingActionButton-class.html
https://docs.flutter.io/flutter/widgets/Icon-class.html

107

That wraps up the app’s main screen. If you recall, the main screen (represented by the

DocList class) is invoked within main.dart.

If you have followed all the steps described, you should now be able to run the application from

Android Studio (don’t forget to select an emulator device).

A minute later (sometimes Android Studio takes a minute or so to resolve and update all the

required dependencies), you’ll be able to see the app running with no documents in it.

Figure 4-e: The finished app running (clean database)

The first time it runs, the app shows no documents because the database is empty, and just

newly created. You should now be able to add your own documents.

I’m going to add a new test document with the following data. Let’s have a look.

108

Figure 4-f: A new document

If we click Save, the document will appear on the app’s main screen—we can see this in the

following figure.

Figure 4-g: The new cocument zdded

Awesome—it’s working as expected. Now, let’s try the Reset Local Data menu option to see if

the database is cleared.

Figure 4-h: The reset cata option

If we tap on the Reset Local Data menu option, we should see the following dialog box.

109

Figure 4-i: Confirming the reset data option

If we now tap OK, the contents of the database should be deleted and the document list should

appear empty. Let’s see if that’s the case.

Figure 4-j: An empty document list

Awesome—the Reset Local Data menu option worked, and we have a fully working application.

You can find the full source code and Android Studio project for this application on the

Syncfusion GitHub repository that comes along with this book. Alternatively, you may also get

the full source code files here.

Summary

We’ve now explored the Flutter framework and built this cool application together—and although

we’ve reached the end of the book, this is hopefully just the beginning of your journey with

Flutter.

Going forward, I encourage you to expand the capabilities of this application and, if I may, I’d

like to suggest you add a cool feature to this application that I couldn’t cover in this book. That’s

https://1drv.ms/u/s!AgBX7xIEoO8BkZM8n165s9baUGR7OQ

110

the ability to have a mechanism in place that allows the app to keep multiple document lists,

each associated with an email address, which can be synced to the cloud (i.e. using Google’s

Cloud Firestore database).

Say, for instance, that I’d like to keep a list of documents for myself, but I’d also like to keep a

list of documents for my wife—with documents that are relevant to her.

If the app would give me the option to store two lists, each one associated with a different user

(email address), I could keep track of multiple document lists and have them synced to the

cloud in case my phone gets lost, damaged, or stolen.

This would also give me the capability of installing the app on a new phone, and being able to

retrieve those document lists by using the username (email address) each was saved with—

wouldn’t that be cool?

Also, why not add the alerting mechanism for which we built the UI—this would also be

something very useful.

So, there you go—a interesting challenge and problem to solve, which can be used to expand

the code that has already been written for this application.

Before you go, don’t forget to check the Appendix, where you can find the finished source code

of each Dart file of the application.

I’m keen to see what you will build. Until next time, have fun with Flutter. Thanks so much for

reading!

https://firebase.google.com/docs/firestore/

111

Appendix—Full Code

Full main.dart code

Here’s the complete finished source code for our app’s main.dart file.

Code Listing Appendix-a: Finished main.dart

import 'package:flutter/material.dart';
import './ui/doclist.dart';

void main() => runApp(DocExpiryApp());

class DocExpiryApp extends StatelessWidget
{
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 debugShowCheckedModeBanner: false,
 title: 'DocExpire',
 theme: new ThemeData(
 primarySwatch: Colors.indigo,
),
 home: DocList(),
);
 }
}

Full utils.dart code

Here’s the complete finished source code for our app’s utils.dart file.

Code Listing Appendix-b: Finished utils.dart

import 'package:intl/intl.dart';

class Val {
 // Validations
 static String ValidateTitle(String val) {
 return (val != null && val != "") ? null : "Title cannot be empty";
 }

 static String GetExpiryStr(String expires) {
 var e = DateUtils.convertToDate(expires);
 var td = new DateTime.now();

112

 Duration dif = e.difference(td);
 int dd = dif.inDays + 1;
 return (dd > 0) ? dd.toString() : "0";
 }

 static bool StrToBool(String str) {
 return (int.parse(str) > 0) ? true : false;
 }

 static bool IntToBool(int val) {
 return (val > 0) ? true : false;
 }

 static String BoolToStr(bool val) {
 return (val == true) ? "1" : "0";
 }

 static int BoolToInt(bool val) {
 return (val == true) ? 1 : 0;
 }
}

class DateUtils {
 static DateTime convertToDate(String input) {
 try
 {
 var d = new DateFormat("yyyy-MM-dd").parseStrict(input);
 return d;
 } catch (e) {
 return null;
 }
 }

 static String convertToDateFull(String input) {
 try
 {
 var d = new DateFormat("yyyy-MM-dd").parseStrict(input);
 var formatter = new DateFormat('dd MMM yyyy');
 return formatter.format(d);
 } catch (e) {
 return null;
 }
 }

 static String convertToDateFullDt(DateTime input) {
 try
 {
 var formatter = new DateFormat('dd MMM yyyy');

113

 return formatter.format(input);
 } catch (e) {
 return null;
 }
 }

 static bool isDate(String dt) {
 try
 {
 var d = new DateFormat("yyyy-MM-dd").parseStrict(dt);
 return true;
 } catch (e) {
 return false;
 }
 }

 static bool isValidDate(String dt) {
 if (dt.isEmpty || !dt.contains("-") || dt.length < 10) return false;

 List<String> dtItems = dt.split("-");
 var d = DateTime(int.parse(dtItems[0]),
 int.parse(dtItems[1]), int.parse(dtItems[2]));

 return d != null && isDate(dt) &&
 d.isAfter(new DateTime.now());
 }

 // String functions
 static String daysAheadAsStr(int daysAhead) {
 var now = new DateTime.now();
 DateTime ft = now.add(new Duration(days: daysAhead));
 return ftDateAsStr(ft);
 }

 static String ftDateAsStr(DateTime ft) {
 return ft.year.toString() + "-" +
 ft.month.toString().padLeft(2, "0") + "-" +
 ft.day.toString().padLeft(2, "0");
 }

 static String TrimDate(String dt) {
 if (dt.contains(" ")) {
 List<String> p = dt.split(" ");
 return p[0];
 }
 else
 return dt;
 }
}

114

Full dbhelper.dart code

Here’s the complete finished source code for our app’s dbhelper.dart file.

Code Listing Appendix-c: Finished dbhelper.dart

import 'package:flutter/material.dart';
import 'package:sqflite/sqflite.dart';
import 'package:path_provider/path_provider.dart';

import 'dart:async';
import 'dart:io';

import '../model/model.dart';

class DbHelper {
 // Tables
 static String tblDocs = "docs";

 // Fields of the 'docs' table.
 String docId = "id";
 String docTitle = "title";
 String docExpiration = "expiration";

 String fqYear = "fqYear";
 String fqHalfYear = "fqHalfYear";
 String fqQuarter = "fqQuarter";
 String fqMonth = "fqMonth";

 // Singleton
 static final DbHelper _dbHelper = DbHelper._internal();

 DbHelper._internal();

 factory DbHelper() {
 return _dbHelper;
 }

 // Database entry point.
 static Database _db;

 Future<Database> get db async {
 if (_db == null) {
 _db = await initializeDb();
 }

 return _db;
 }

115

 // Initialize the database.
 Future<Database> initializeDb() async {
 Directory d = await getApplicationDocumentsDirectory();
 String p = d.path + "/docexpire.db";
 var db = await openDatabase(p, version: 1, onCreate: _createDb);
 return db;
 }

 // Create database tables.
 void _createDb(Database db, int version) async {
 await db.execute(
 "CREATE TABLE $tblDocs($docId INTEGER PRIMARY KEY, $docTitle TEXT, "
 + "$docExpiration TEXT, " +
 "$fqYear INTEGER, $fqHalfYear INTEGER, $fqQuarter INTEGER, " +
 "$fqMonth INTEGER)"
);
 }

 // Insert a new doc.
 Future<int> insertDoc(Doc doc) async {
 var r;

 Database db = await this.db;
 try {
 r = await db.insert(tblDocs, doc.toMap());
 }
 catch (e) {
 debugPrint("insertDoc: " + e.toString());
 }
 return r;
 }

 // Get the list of docs.
 Future<List> getDocs() async {
 Database db = await this.db;
 var r = await db.rawQuery(
 "SELECT * FROM $tblDocs ORDER BY $docExpiration ASC");
 return r;
 }

 // Gets a Doc based on the id.
 Future<List> getDoc(int id) async {
 Database db = await this.db;
 var r = await db.rawQuery(
 "SELECT * FROM $tblDocs WHERE $docId = " + id.toString() + "");
 return r;
 }

 // Gets a Doc based on a String payload.

116

 Future<List> getDocFromStr(String payload) async {
 List<String> p = payload.split("|");
 if (p.length == 2) {
 Database db = await this.db;
 var r = await db.rawQuery(
 "SELECT * FROM $tblDocs WHERE $docId = " + p[0] +
 " AND $docExpiration = '" + p[1] + "'");
 return r;
 }
 else
 return null;
 }

 // Get the number of docs.
 Future<int> getDocsCount() async {
 Database db = await this.db;
 var r = Sqflite.firstIntValue(
 await db.rawQuery("SELECT COUNT(*) FROM $tblDocs")
);
 return r;
 }

 // Get the max document id available on the database.
 Future<int> getMaxId() async {
 Database db = await this.db;
 var r = Sqflite.firstIntValue(
 await db.rawQuery("SELECT MAX(id) FROM $tblDocs")
);
 return r;
 }

 // Update a doc.
 Future<int> updateDoc(Doc doc) async {
 var db = await this.db;
 var r = await db.update(tblDocs, doc.toMap(),
 where: "$docId = ?", whereArgs: [doc.id]);
 return r;
 }

 // Delete a doc.
 Future<int> deleteDoc(int id) async {
 var db = await this.db;
 int r = await db.rawDelete(
 "DELETE FROM $tblDocs WHERE $docId = $id");
 return r;
 }

 // Delete all rows.
 Future<int> deleteRows(String tbl) async {

117

 var db = await this.db;
 int r = await db.rawDelete("DELETE FROM $tbl");
 return r;
 }
}

Full model.dart code

Here’s the complete finished source code for our app’s model.dart file.

Code Listing Appendix-d: Finished model.dart

import '../util/utils.dart';

class Doc
{
 int id;
 String title;
 String expiration;

 int fqYear;

 int fqHalfYear;
 int fqQuarter;
 int fqMonth;

 Doc(this.title, this.expiration, this.fqYear,
 this.fqHalfYear, this.fqQuarter, this.fqMonth);

 Doc.withId(this.id, this.title, this.expiration, this.fqYear,
 this.fqHalfYear, this.fqQuarter, this.fqMonth);

 Map<String, dynamic> toMap() {
 var map = Map<String, dynamic>();

 map["title"] = this.title;
 map["expiration"] = this.expiration;

 map["fqYear"] = this.fqYear;
 map["fqHalfYear"] = this.fqHalfYear;
 map["fqQuarter"] = this.fqQuarter;
 map["fqMonth"] = this.fqMonth;

 if (id != null) {
 map["id"] = id;
 }

118

 return map;
 }

 Doc.fromOject(dynamic o) {
 this.id = o["id"];
 this.title = o["title"];
 this.expiration = DateUtils.TrimDate(o["expiration"]);

 this.fqYear = o["fqYear"];
 this.fqHalfYear = o["fqHalfYear"];
 this.fqQuarter = o["fqQuarter"];
 this.fqMonth = o["fqMonth"];
 }
}

Full docdetail.dart code

Here’s the complete finished source code for our app’s docdetail.dart file.

Code Listing Appendix-e: Finished docdetail.dart

import 'dart:async';

import 'package:flutter/material.dart';
import 'package:flutter/services.dart';
import 'package:flutter_masked_text/flutter_masked_text.dart';
import 'package:flutter_datetime_picker/flutter_datetime_picker.dart';

import '../model/model.dart';
import '../util/utils.dart';
import '../util/dbhelper.dart';

// Menu item
const menuDelete = "Delete";
final List<String> menuOptions = const <String> [
 menuDelete
];

class DocDetail extends StatefulWidget {
 Doc doc;
 final DbHelper dbh = DbHelper();

 DocDetail(this.doc);

 @override
 State<StatefulWidget> createState() => DocDetailState();
}

119

class DocDetailState extends State<DocDetail> {
 final GlobalKey<FormState> _formKey = new GlobalKey<FormState>();
 final GlobalKey<ScaffoldState> _scaffoldKey =
 new GlobalKey<ScaffoldState>();

 final int daysAhead = 5475; // 15 years in the future

 final TextEditingController titleCtrl = TextEditingController();
 final TextEditingController expirationCtrl =
 MaskedTextController(mask: '2000-00-00');

 bool fqYearCtrl = true;
 bool fqHalfYearCtrl = true;
 bool fqQuarterCtrl = true;
 bool fqMonthCtrl = true;
 bool fqLessMonthCtrl = true;

 // Initialization code
 void _initCtrls() {
 titleCtrl.text = widget.doc.title != null ? widget.doc.title : "";
 expirationCtrl.text =
 widget.doc.expiration != null ? widget.doc.expiration : "";

 fqYearCtrl = widget.doc.fqYear != null ?
 Val.IntToBool(widget.doc.fqYear) : false;
 fqHalfYearCtrl = widget.doc.fqHalfYear != null ?
 Val.IntToBool(widget.doc.fqHalfYear) : false;
 fqQuarterCtrl = widget.doc.fqQuarter != null ?
 Val.IntToBool(widget.doc.fqQuarter) : false;
 fqMonthCtrl = widget.doc.fqMonth != null ?
 Val.IntToBool(widget.doc.fqMonth) : false;
 }

 // Date Picker & Date functions
 Future _chooseDate(BuildContext context, String initialDateString)
 async {
 var now = new DateTime.now();
 var initialDate = DateUtils.convertToDate(initialDateString) ?? now;

 initialDate = (initialDate.year >= now.year &&
 initialDate.isAfter(now) ? initialDate : now);

 DatePicker.showDatePicker(context, showTitleActions: true,
 onConfirm: (date) {
 setState(() {
 DateTime dt = date;
 String r = DateUtils.ftDateAsStr(dt);
 expirationCtrl.text = r;

120

 });
 },
 currentTime: initialDate);
 }

 // Upper Menu
 void _selectMenu(String value) async {
 switch (value) {
 case menuDelete:
 if (widget.doc.id == -1) {
 return;
 }
 await _deleteDoc(widget.doc.id);
 }
 }

 // Delete doc
 void _deleteDoc(int id) async {
 int r = await widget.dbh.deleteDoc(widget.doc.id);
 Navigator.pop(context, true);
 }

 // Save doc
 void _saveDoc () {
 widget.doc.title = titleCtrl.text;
 widget.doc.expiration = expirationCtrl.text;

 widget.doc.fqYear = Val.BoolToInt(fqYearCtrl);
 widget.doc.fqHalfYear = Val.BoolToInt(fqHalfYearCtrl);
 widget.doc.fqQuarter = Val.BoolToInt(fqQuarterCtrl);
 widget.doc.fqMonth = Val.BoolToInt(fqMonthCtrl);

 if (widget.doc.id > -1) {
 debugPrint("_update->Doc Id: " + widget.doc.id.toString());
 widget.dbh.updateDoc(widget.doc);
 Navigator.pop(context, true);
 }
 else {
 Future<int> idd = widget.dbh.getMaxId();
 idd.then((result) {
 debugPrint("_insert->Doc Id: " + widget.doc.id.toString());
 widget.doc.id = (result != null) ? result + 1 : 1;
 widget.dbh.insertDoc(widget.doc);
 Navigator.pop(context, true);
 });
 }
 }

 // Submit form

121

 void _submitForm() {
 final FormState form = _formKey.currentState;

 if (!form.validate()) {
 showMessage('Some data is invalid. Please correct.');
 } else {
 _saveDoc();
 }
 }

 void showMessage(String message, [MaterialColor color = Colors.red]) {
 _scaffoldKey.currentState.showSnackBar(
 new SnackBar(backgroundColor: color, content: new Text(message)));
 }

 @override
 void initState() {
 super.initState();
 _initCtrls();
 }

 @override
 Widget build(BuildContext context) {
 const String cStrDays = "Enter a number of days";
 TextStyle tStyle = Theme.of(context).textTheme.title;
 String ttl = widget.doc.title;

 return Scaffold(
 key: _scaffoldKey,
 resizeToAvoidBottomPadding: false,
 appBar: AppBar(
 title: Text(ttl != "" ? widget.doc.title : "New Document"),
 actions: (ttl == "") ? <Widget>[]: <Widget>[
 PopupMenuButton(
 onSelected: _selectMenu,
 itemBuilder: (BuildContext context) {
 return menuOptions.map((String choice) {
 return PopupMenuItem<String>(
 value: choice,
 child: Text(choice),
);
 }).toList();
 },
),
]
),
 body: Form(
 key: _formKey,
 autovalidate: true,

122

 child: SafeArea(
 top: false,
 bottom: false,
 child: ListView(
 padding: const EdgeInsets.symmetric(horizontal: 16.0),
 children: <Widget>[
 TextFormField (
 inputFormatters: [
 WhitelistingTextInputFormatter(
 RegExp("[a-zA-Z0-9]"))
],
 controller: titleCtrl,
 style: tStyle,
 validator: (val) => Val.ValidateTitle(val),
 decoration: InputDecoration(
 icon: const Icon(Icons.title),
 hintText: 'Enter the document name',
 labelText: 'Document Name',
),
),
 Row(children: <Widget>[
 Expanded(
 child: TextFormField(
 controller: expirationCtrl,
 maxLength: 10,
 decoration: InputDecoration(
 icon: const Icon(Icons.calendar_today),
 hintText: 'Expiry date (i.e. ' +
 DateUtils.daysAheadAsStr(daysAhead) + ')',
 labelText: 'Expiry Date'
),
 keyboardType: TextInputType.number,
 validator: (val) => DateUtils.isValidDate(val)
 ? null :
 'Not a valid future date',
)),
 IconButton(
 icon: new Icon(Icons.more_horiz),
 tooltip: 'Choose date',
 onPressed: (() {
 _chooseDate(context, expirationCtrl.text);
 }),
)
]),
 Row(children: <Widget>[
 Expanded(child: Text(' ')),
]),
 Row(children: <Widget>[
 Expanded(child: Text('a: Alert @ 1.5 & 1 year(s)')),

123

 Switch(
 value: fqYearCtrl, onChanged: (bool value) {
 setState(() {
 fqYearCtrl = value;
 });
 }),
]),
 Row(children: <Widget>[
 Expanded(child: Text('b: Alert @ 6 months')),
 Switch(
 value: fqHalfYearCtrl, onChanged: (bool value) {
 setState(() {
 fqHalfYearCtrl = value;
 });
 }),
]),
 Row(children: <Widget>[
 Expanded(child: Text('c: Alert @ 3 months')),
 Switch(
 value: fqQuarterCtrl, onChanged: (bool value) {
 setState(() {
 fqQuarterCtrl = value;
 });
 }),
]),
 Row(children: <Widget>[
 Expanded(child: Text('d: Alert @ 1 month or less')),
 Switch(
 value: fqMonthCtrl, onChanged: (bool value) {
 setState(() {
 fqMonthCtrl = value;
 });
 }),
]),
 Container(
 padding:
 const EdgeInsets.only(left: 40.0, top: 20.0),
 child: RaisedButton(
 child: Text("Save"),
 onPressed: _submitForm,
)
),
],
),
)));
 }
}

124

Full doclist.dart code

Here’s the complete finished source code for our app’s doclist.dart file.

Code Listing Appendix-f: Finished doclist.dart

import 'dart:async';

import 'package:flutter/material.dart';

import '../model/model.dart';
import '../util/dbhelper.dart';
import '../util/utils.dart';
import './docdetail.dart';

// Menu item
const menuReset = "Reset Local Data";
List<String> menuOptions = const <String> [
 menuReset
];

class DocList extends StatefulWidget {
 @override
 State<StatefulWidget> createState() => DocListState();
}

class DocListState extends State<DocList> {
 DbHelper dbh = DbHelper();
 List<Doc> docs;
 int count = 0;
 DateTime cDate;

 @override
 void initState() {
 super.initState();
 }

 Future getData() async {
 final dbFuture = dbh.initializeDb();
 dbFuture.then(
 // result here is the actual reference to the database object
 (result) {
 final docsFuture = dbh.getDocs();
 docsFuture.then(
 // result here is the list of docs in the database
 (result) {
 if (result.length >= 0) {
 List<Doc> docList = List<Doc>();
 var count = result.length;

125

 for (int i = 0; i <= count - 1; i++) {
 docList.add(Doc.fromOject(result[i]));
 }
 setState(() {
 if (this.docs.length > 0) {
 this.docs.clear();
 }

 this.docs = docList;
 this.count = count;
 });
 }
 });
 });
 }

 void _checkDate() {
 const secs = const Duration(seconds:10);

 new Timer.periodic(secs, (Timer t) {
 DateTime nw = DateTime.now();

 if (cDate.day != nw.day || cDate.month != nw.month ||
 cDate.year != nw.year) {
 getData();
 cDate = DateTime.now();
 }
 });
 }

 void navigateToDetail(Doc doc) async {
 bool r = await Navigator.push(context,
 MaterialPageRoute(builder: (context) => DocDetail(doc))
);

 if (r == true) {
 getData();
 }
 }

 void _showResetDialog() {
 showDialog(
 context: context,
 builder: (BuildContext context) {
 return AlertDialog(
 title: new Text("Reset"),
 content: new Text("Do you want to delete all local data?"),
 actions: <Widget>[
 FlatButton(

126

 child: new Text("Cancel"),
 onPressed: () {
 Navigator.of(context).pop();
 },
),
 FlatButton(
 child: new Text("OK"),
 onPressed: () {
 Future f = _resetLocalData();
 f.then(
 (result) {
 Navigator.of(context).pop();
 }
);
 },
),
],
);
 },
);
 }

 Future _resetLocalData() async {
 final dbFuture = dbh.initializeDb();
 dbFuture.then(
 (result) {
 final dDocs = dbh.deleteRows(DbHelper.tblDocs);
 dDocs.then(
 (result) {
 setState(() {
 this.docs.clear();
 this.count = 0;
 });
 }
);
 }
);
 }

 void _selectMenu(String value) async {
 switch (value) {
 case menuReset:
 _showResetDialog();
 }
 }

 ListView docListItems() {
 return ListView.builder(
 itemCount: count,

127

 itemBuilder: (BuildContext context, int position) {
 String dd = Val.GetExpiryStr(this.docs[position].expiration);
 String dl = (dd != "1") ? " days left" : " day left";
 return Card(
 color: Colors.white,
 elevation: 1.0,
 child: ListTile(
 leading: CircleAvatar(
 backgroundColor:
 (Val.GetExpiryStr(this.docs[position].expiration) != "0") ?
 Colors.blue : Colors.red,
 child: Text(
 this.docs[position].id.toString(),
),
),
 title: Text(this.docs[position].title),
 subtitle: Text(
 Val.GetExpiryStr(this.docs[position].expiration) + dl +
 "\nExp: " + DateUtils.convertToDateFull(
 this.docs[position].expiration)),
 onTap: () {
 navigateToDetail(this.docs[position]);
 },
),
);
 },
);
 }

 @override
 Widget build(BuildContext context) {
 this.cDate = DateTime.now();

 if (this.docs == null) {
 this.docs = List<Doc>();
 getData();
 }

 _checkDate();

 return Scaffold(
 resizeToAvoidBottomPadding: false,
 appBar: AppBar(
 title: Text("DocExpire"),
 actions: <Widget>[
 PopupMenuButton(
 onSelected: _selectMenu,
 itemBuilder: (BuildContext context) {
 return menuOptions.map((String choice) {

128

 return PopupMenuItem<String>(
 value: choice,
 child: Text(choice),
);
 }).toList();
 },
),
]
),
 body: Center(
 child: Scaffold(
 body: Stack(
 children: <Widget>[
 docListItems(),
]),
 floatingActionButton: FloatingActionButton(
 onPressed: () {
 navigateToDetail(Doc.withId(-1, "", "", 1, 1, 1, 1));
 },
 tooltip: "Add new doc",
 child: Icon(Icons.add),
),
),
),
);
 }
}

Full Pubspec.yaml code

Here’s the complete finished code for our app’s Pubspec.yaml file.

Code Listing Appendix-g: Finished Pubspec.yaml

name: flutter_app
description: A new Flutter application.

The following defines the version and build number for your
application.
A version number is three numbers separated by dots, like 1.2.43
followed by an optional build number separated by a +.
Both the version and the builder number may be overridden in Flutter
build by specifying --build-name and --build-number, respectively.
Read more about versioning at semver.org.
version: 1.0.0+1

environment:

129

 sdk: ">=2.0.0-dev.68.0 <3.0.0"

dependencies:
 flutter:
 sdk: flutter
 intl: ^0.15.7
 sqflite: any
 path_provider: any
 flutter_masked_text: ^0.6.0
 flutter_datetime_picker: ^1.0.1
 # The following adds the Cupertino Icons font to your application.
 # Use with the CupertinoIcons class for iOS style icons.
 cupertino_icons: ^0.1.2

dev_dependencies:
 flutter_test:
 sdk: flutter

For information on the generic Dart part of this file, see the
following page: https://www.dartlang.org/tools/pub/pubspec

The following section is specific to Flutter.
flutter:

 # The following line ensures that the Material Icons font is
 # included with your application, so that you can use the icons in
 # the material Icons class.
 uses-material-design: true

Full Android Studio project

Here’s the full Android Studio Project, which contains source files, plus all the build files for

Android.

https://github.com/SyncfusionSuccinctlyE-Books/Flutter-Succinctly

	Table of Contents
	The Story Behind the Succinctly Series of Books
	taying on the cutting edge
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Acknowledgements
	Introduction
	Chapter 1 Setup
	Project overview
	Installation
	Setting up an editor
	Creating the app
	Creating a virtual device
	Testing our setup
	Hot reloading
	Summary

	Chapter 2 App Fundamentals
	Quick intro
	Rewriting—main.dart
	Project structure
	Bottom-to-top coding approach
	Writing utils.dart
	Writing model.dart
	Creating the database—dbhelper.dart
	Inserting a new document—dbhelper.dart
	Getting the list of documents—dbhelper.dart
	Getting a specific document—dbhelper.dart
	Counting documents—dbhelper.dart
	Updating and deleting documents—dbhelper.dart
	Summary

	Chapter 3 App UI—Document Details
	Quick intro
	Document Details
	Menu options
	Stateful widget
	Initializing text controllers and variables
	Choosing a date
	Deleting a document
	Saving a document
	Submitting the form
	Building the UI
	Scaffold
	AppBar
	Body
	Document Name and Expiry Date
	Document Name field
	Expiry Date field
	Alert fields
	Save button
	Summary

	Chapter 4 App UI—Main Screen
	Quick intro
	Getting started: main menu option
	Main stateful widget
	Getting a list of documents
	Checking dates
	Navigating to the document details
	Resetting the local data
	Selecting the menu option
	Building the list of documents
	Finalizing the main screen
	Summary

	Appendix—Full Code
	Full main.dart code
	Full utils.dart code
	Full dbhelper.dart code
	Full model.dart code
	Full docdetail.dart code
	Full doclist.dart code
	Full Pubspec.yaml code
	Full Android Studio project

